
MicroBlaze
Processor
Reference Guide
Embedded Development Kit
EDK 13.3

UG081 (v13.3)

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.
Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© 2011 Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

10/01/02 1.0 Xilinx EDK 3.1 release

03/11/03 2.0 Xilinx EDK 3.2 release

09/24/03 3.0 Xilinx EDK 6.1 release

02/20/04 3.1 Xilinx EDK 6.2 release

08/24/04 4.0 Xilinx EDK 6.3 release

09/21/04 4.1 Minor corrections for EDK 6.3 SP1 release

11/18/04 4.2 Minor corrections for EDK 6.3 SP2 release

01/20/05 5.0 Xilinx EDK 7.1 release

04/02/05 5.1 Minor corrections for EDK 7.1 SP1 release

05/09/05 5.2 Minor corrections for EDK 7.1 SP2 release

10/05/05 5.3 Minor corrections for EDK 8.1 release

02/21/06 5.4 Corrections for EDK 8.1 SP2 release

06/01/06 6.0 Xilinx EDK 8.2 release

07/24/06 6.1 Minor corrections for EDK 8.2 SP1 release

08/21/06 6.2 Minor corrections for EDK 8.2 SP2 release

08/29/06 6.3 Minor corrections for EDK 8.2 SP2 release

09/15/06 7.0 Xilinx EDK 9.1 release

02/22/07 7.1 Minor corrections for EDK 9.1 SP1 release

03/27/07 7.2 Minor corrections for EDK 9.1 SP2 release
MicroBlaze Processor Reference Guide www.xilinx.com UG081 (v13.3)

http://www.xilinx.com

06/25/07 8.0 Xilinx EDK 9.2 release

10/12/07 8.1 Minor corrections for EDK 9.2 SP2 release

01/17/08 9.0 Xilinx EDK 10.1 release

03/04/08 9.1 Minor corrections for EDK 10.1 SP1 release

05/14/08 9.2 Minor corrections for EDK 10.1 SP2 release

07/14/08 9.3 Minor corrections for EDK 10.1 SP3 release

02/04/09 10.0 Xilinx EDK 11.1 release

04/15/09 10.1 Xilinx EDK 11.2 release

05/28/09 10.2 Xilinx EDK 11.3 release

10/26/09 10.3 Xilinx EDK 11.4 release

04/19/10 11.0 Xilinx EDK 12.1 release

07/23/10 11.1 Xilinx EDK 12.2 release

09/21/10 11.2 Xilinx EDK 12.3 release

11/15/10 11.3 Minor corrections for EDK 12.4 release

11/15/10 11.4 Xilinx EDK 12.4 release

03/01/11 12.0 Xilinx EDK 13.1 release

06/22/11 13.2 Xilinx EDK 13.2 release

10/19/11 13.3 Xilinx EDK 13.3 release

Date Version Revision
UG081 (v13.3) www.xilinx.com MicroBlaze Processor Reference Guide

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com UG081 (v13.3)

http://www.xilinx.com

Revision History . 2

Chapter 1: Introduction
Guide Contents . 7

Conventions . 7

Chapter 2: MicroBlaze Architecture
Overview . 9

Data Types and Endianness . 13

Instructions . 14

Registers . 25

Pipeline Architecture . 50

Memory Architecture. 52

Privileged Instructions. 53

Virtual-Memory Management. 54

Reset, Interrupts, Exceptions, and Break . 64

Instruction Cache . 71

Data Cache . 73

Floating Point Unit (FPU) . 77

Stream Link Interfaces . 81

Debug and Trace . 82

Fault Tolerance . 83

Lockstep Operation . 89

Chapter 3: MicroBlaze Signal Interface Description
Overview . 93

MicroBlaze I/O Overview . 94

AXI4 Interface Description . 104

Processor Local Bus (PLB) Interface Description . 106

Local Memory Bus (LMB) Interface Description. 107

Fast Simplex Link (FSL) Interface Description . 114

Xilinx CacheLink (XCL) Interface Description . 116

Lockstep Interface Description . 122

Debug Interface Description . 128

Trace Interface Description . 128

MicroBlaze Core Configurability . 131
Table of Contents
MicroBlaze Processor Reference Guide www.xilinx.com 5
UG081 (v13.3)

http://www.xilinx.com

Chapter 4: MicroBlaze Application Binary Interface
Data Types . 143

Register Usage Conventions . 144

Stack Convention . 145

Memory Model . 147

Interrupt and Exception Handling . 148

Chapter 5: MicroBlaze Instruction Set Architecture
Notation . 149

Formats . 151

Instructions . 151

Appendix A: Additional Resources
EDK Documentation . 249

Additional Resources . 249
MicroBlaze Processor Reference Guide www.xilinx.com 6
UG081 (v13.3)

http://www.xilinx.com

Chapter 1

Introduction

The MicroBlaze™ Processor Reference Guide provides information about the 32-bit soft processor,
MicroBlaze, which is part of the Embedded Processor Development Kit (EDK). The document is
intended as a guide to the MicroBlaze hardware architecture.

Guide Contents
This guide contains the following chapters:

 Chapter 2, “MicroBlaze Architecture,” contains an overview of MicroBlaze features as well as
information on Big-Endian and Little-Endian bit-reversed format, 32-bit general purpose
registers, cache software support, and Fast Simplex Link interfaces.

 Chapter 3, “MicroBlaze Signal Interface Description,” describes the types of signal interfaces
that can be used to connect MicroBlaze.

 Chapter 4, “MicroBlaze Application Binary Interface,” describes the Application Binary
Interface important for developing software in assembly language for the soft processor.

 Chapter 5, “MicroBlaze Instruction Set Architecture,” provides notation, formats, and
instructions for the Instruction Set Architecture of MicroBlaze.

 Appendix A, “Additional Resources,” provides links to EDK documentation and additional
resources.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and program
files that the system displays.

speed grade: - 100

Courier bold
Literal commands that you enter in
a syntactical statement.

ngdbuild design_name

Helvetica bold

Commands that you select from a
menu.

File Open

Keyboard shortcuts Ctrl+C
MicroBlaze Processor Reference Guide www.xilinx.com 7
UG081 (v13.3)

http://www.xilinx.com

Chapter 1: Introduction
Online Document
The following conventions are used in this document:

Italic font

Variables in a syntax statement for
which you must supply values.

ngdbuild design_name

References to other manuals. See the Development System
Reference Guide for more
information.

Emphasis in text. If a wire is drawn so that it overlaps
the pin of a symbol, the two nets are
not connected.

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { }
A list of items from which you must
choose one or more.

lowpwr ={on|off}

Vertical bar | Separates items in a list of choices. lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has been
omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’

.

.

.

Horizontal ellipsis . . .
Repetitive material that has been
omitted

allow block block_name loc1
loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text

Cross-reference link to a location in
the current document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in Chapter
1 for details.

Blue, underlined text
Hyperlink to a web-site (URL) Go to http://www.xilinx.com for the

latest speed files.
8 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Chapter 2

MicroBlaze Architecture

This chapter contains an overview of MicroBlaze™ features and detailed information on
MicroBlaze architecture including Big-Endian or Little-Endian bit-reversed format, 32-bit general
purpose registers, virtual-memory management, cache software support, and Fast Simplex Link
(FSL) or AXI4-Stream interfaces.

Overview
The MicroBlaze™ embedded processor soft core is a reduced instruction set computer (RISC)
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs). Figure 2-1
shows a functional block diagram of the MicroBlaze core.

Figure 2-1: MicroBlaze Core Block Diagram

DXCL_M

DXCL_S

Data-sideInstruction-side

IPLB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

IXCL_M

IXCL_S
I-C

ache

D
-C

ach
e

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose
Registers

Optional MicroBlaze feature

M_AXI_IP

UTLBITLB DTLB

Memory Management Unit (MMU)

DPLB

DLMB

M_AXI_DP

MFSL 0..15
DWFSL 0..15
SFSL 0..15
DRFSL 0..15

or

or

M_AXI_IC M_AXI_DC

Branch
Target
Cache

M0_AXIS..

S0_AXIS..
M15_AXIS

S15_AXIS
MicroBlaze Processor Reference Guide www.xilinx.com 9
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Features
The MicroBlaze soft core processor is highly configurable, allowing you to select a specific set of
features required by your design.

The fixed feature set of the processor includes:

 Thirty-two 32-bit general purpose registers

 32-bit instruction word with three operands and two addressing modes

 32-bit address bus

 Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow selective
enabling of additional functionality. Older (deprecated) versions of MicroBlaze support a subset of
the optional features described in this manual. Only the latest (preferred) version of MicroBlaze
(v8.00) supports all options.

Xilinx recommends that all new designs use the latest preferred version of the MicroBlaze
processor.

Table 2-1, page 10 provides an overview of the configurable features by MicroBlaze versions.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze Versions

v7.00 v7.10 v7.20 v7.30 v8.00 v8.10 v8.20

Version Status obsolete obsolete obsolete obsolete deprecated deprecated preferred

Processor pipeline depth 3/5 3/5 3/5 3/5 3/5 3/5 3/5

On-chip Peripheral Bus (OPB) data side
interface

option option option No No No No

On-chip Peripheral Bus (OPB)
instruction side interface

option option option No No No No

Local Memory Bus (LMB) data side
interface

option option option option option option option

Local Memory Bus (LMB) instruction
side interface

option option option option option option option

Hardware barrel shifter option option option option option option option

Hardware divider option option option option option option option

Hardware debug logic option option option option option option option

Stream link interfaces 0-15
FSL

0-15
FSL

0-15
FSL

0-15
FSL

0-15
FSL/AXI

0-15
FSL/AXI

0-15
FSL/AXI

Machine status set and clear instructions option option option option option option option

Instruction cache over IOPB interface No No No No No No No

Data cache over DOPB interface No No No No No No No

Instruction cache over Cache Link
(IXCL) interface

option option option option option option option
10 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Overview
Data cache over Cache Link (DXCL)
interface

option option option option option option option

4 or 8-word cache line option option option option option option option

Hardware exception support option option option option option option option

Pattern compare instructions option option option option option option option

Floating point unit (FPU) option option option option option option option

Disable hardware multiplier1 option option option option option option option

Hardware debug readable ESR and EAR Yes Yes Yes Yes Yes Yes Yes

Processor Version Register (PVR) option option option option option option option

Area or speed optimized option option option option option option option

Hardware multiplier 64-bit result option option option option option option option

LUT cache memory option option option option option option option

Processor Local Bus (PLB) data side
interface

option option option option option option option

Processor Local Bus (PLB) instruction
side interface

option option option option option option option

Floating point conversion and square root
instructions

option option option option option option option

Memory Management Unit (MMU) option option option option option option option

Extended stream instructions option option option option option option option

Use Xilinx Cache Link for All I-Cache
Memory Accesses

- option option option option option option

Use Xilinx Cache Link for All D-Cache
Memory Accesses

- option option option option option option

Use Write-back Caching Policy for D-
Cache

- - option option option option option

Cache Link (DXCL) protocol for D-
Cache

- - option option option option option

Cache Link (IXCL) protocol for I-Cache - - option option option option option

Branch Target Cache (BTC) - - - option option option option

Streams for I-Cache option option option option

Victim handling for I-Cache option option option option

Victim handling for D-Cache option option option option

AXI4 (M_AXI_DP) data side interface - - - - option option option

AXI4 (M_AXI_IP) instruction side
interface

- - - - option option option

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze Versions

v7.00 v7.10 v7.20 v7.30 v8.00 v8.10 v8.20
MicroBlaze Processor Reference Guide www.xilinx.com 11
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
AXI4 (M_AXI_DC) protocol for D-
Cache

- - - - option option option

AXI4 (M_AXI_IC) protocol for I-Cache - - - - option option option

AXI4 protocol for stream accesses - - - - option option option

Fault tolerant features - - - - option option option

Tool selectable endianness - - - - option option option

Force distributed RAM for cache tags - - - - option option option

Configurable cache data widths - - - - option option option

Count Leading Zeros instruction - - - - - option option

Memory Barrier instruction - - - - - Yes Yes

Stack overflow and underflow detection - - - - - option option

Allow stream instructions in user mode - - - - - option option

Lockstep support option

Configurable use of FPGA primitives option

1. Used in Virtex®-4 and subsequent families, for saving MUL18 and DSP48 primitives.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze Versions

v7.00 v7.10 v7.20 v7.30 v8.00 v8.10 v8.20
12 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Data Types and Endianness
Data Types and Endianness
MicroBlaze uses Big-Endian or Little-Endian format to represent data, depending on the parameter
C_ENDIANNESS. The hardware supported data types for MicroBlaze are word, half word, and
byte. When using the reversed load and store instructions LHUR, LWR, SHR and SWR, the bytes in
the data are reversed, as indicated by the byte-reversed order.

The bit and byte organization for each type is shown in the following tables.

Table 2-2: Word Data Type

Big-Endian Byte Address n n+1 n+2 n+3

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1 n+2 n+3

Big-Endian Byte-Reversed Order n+3 n+2 n+1 n

Little-Endian Byte Address n+3 n+2 n+1 n

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+3 n+2 n+1 n

Little-Endian Byte-Reversed Order n n+1 n+2 n+3

Bit Label 0 31

Bit Significance MSBit LSBit

Table 2-3: Half Word Data Type

Big-Endian Byte Address n n+1

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1

Big-Endian Byte-Reversed Order n+1 n

Little-Endian Byte Address n+1 n

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+1 n

Little-Endian Byte-Reversed Order n n+1

Bit Label 0 15

Bit Significance MSBit LSBit

Table 2-4: Byte Data Type

Byte Address n

Bit Label 0 7

Bit Significance MSBit LSBit
MicroBlaze Processor Reference Guide www.xilinx.com 13
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Instructions

Instruction Summary
All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand. Type B
instructions have one source register and a 16-bit immediate operand (which can be extended to 32
bits by preceding the Type B instruction with an imm instruction). Type B instructions have a single
destination register operand. Instructions are provided in the following functional categories:
arithmetic, logical, branch, load/store, and special. Table 2-6 lists the MicroBlaze instruction set.
Refer to Chapter 5, “MicroBlaze Instruction Set Architecture”for more information on these
instructions. Table 2-5 describes the instruction set nomenclature used in the semantics of each
instruction.

Table 2-5: Instruction Set Nomenclature

Symbol Description

Ra R0 - R31, General Purpose Register, source operand a

Rb R0 - R31, General Purpose Register, source operand b

Rd R0 - R31, General Purpose Register, destination operand

SPR[x] Special Purpose Register number x

MSR Machine Status Register = SPR[1]

ESR Exception Status Register = SPR[5]

EAR Exception Address Register = SPR[3]

FSR Floating Point Unit Status Register = SPR[7]

PVRx Processor Version Register, where x is the register number = SPR[8192 + x]

BTR Branch Target Register = SPR[11]

PC Execute stage Program Counter = SPR[0]

x[y] Bit y of register x

x[y:z] Bit range y to z of register x

x Bit inverted value of register x

Imm 16 bit immediate value

Immx x bit immediate value

FSLx 4 bit Fast Simplex Link (FSL) or AXI4-Stream port designator, where x is the port number

C Carry flag, MSR[29]

Sa Special Purpose Register, source operand

Sd Special Purpose Register, destination operand

s(x) Sign extend argument x to 32-bit value

*Addr Memory contents at location Addr (data-size aligned)

:= Assignment operator
14 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
= Equality comparison

!= Inequality comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

+ Arithmetic add

* Arithmetic multiply

/ Arithmetic divide

>> x Bit shift right x bits

<< x Bit shift left x bits

and Logic AND

or Logic OR

xor Logic exclusive OR

op1 if cond else op2 Perform op1 if condition cond is true, else perform op2

& Concatenate. E.g. “0000100 & Imm7” is the concatenation of the fixed field “0000100” and a 7 bit
immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are performed on signed
word operands, unless otherwise specified

unsigned Operation performed on unsigned integer data type

float Operation performed on floating point data type

clz(r) Count leading zeros

Table 2-5: Instruction Set Nomenclature (Continued)

Symbol Description

Table 2-6: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

ADD Rd,Ra,Rb 000000 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUB Rd,Ra,Rb 000001 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDC Rd,Ra,Rb 000010 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBC Rd,Ra,Rb 000011 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

ADDK Rd,Ra,Rb 000100 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUBK Rd,Ra,Rb 000101 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb 00000000000 Rd := Rb + Ra + C
MicroBlaze Processor Reference Guide www.xilinx.com 15
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

CMP Rd,Ra,Rb 000101 Rd Ra Rb 00000000001 Rd := Rb + Ra + 1

Rd[0] := 0 if (Rb >= Ra) else
Rd[0] := 1

CMPU Rd,Ra,Rb 000101 Rd Ra Rb 00000000011 Rd := Rb + Ra + 1 (unsigned)
Rd[0] := 0 if (Rb >= Ra, unsigned) else
Rd[0] := 1

ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra

RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C

ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra

RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra + C

MUL Rd,Ra,Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb

MULH Rd,Ra,Rb 010000 Rd Ra Rb 00000000001 Rd := (Ra * Rb) >> 32 (signed)

MULHU Rd,Ra,Rb 010000 Rd Ra Rb 00000000011 Rd := (Ra * Rb) >> 32 (unsigned)

MULHSU Rd,Ra,Rb 010000 Rd Ra Rb 00000000010 Rd := (Ra, signed * Rb, unsigned) >> 32
(signed)

BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01000000000 Rd := s(Ra >> Rb)

BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10000000000 Rd := (Ra << Rb) & 0

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)

BSRLI Rd,Ra,Imm 011001 Rd Ra 00000000000 &
Imm5

Rd : = 0 & (Ra >> Imm5)

BSRAI Rd,Ra,Imm 011001 Rd Ra 00000010000 &
Imm5

Rd := s(Ra >> Imm5)

BSLLI Rd,Ra,Imm 011001 Rd Ra 00000100000 &
Imm5

Rd := (Ra << Imm5) & 0

IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 Rd := Rb/Ra

IDIVU Rd,Ra,Rb 010010 Rd Ra Rb 00000000010 Rd := Rb/Ra, unsigned

TNEAGETD Rd,Rb 010011 Rd 00000 Rb 0N0TAE
00000

Rd := FSL Rb[28:31] (data read)
MSR[FSL] := 1 if (FSL_S_Control = 1)
MSR[C] := not FSL_S_Exists if N = 1

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
16 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
TNAPUTD Ra,Rb 010011 00000 Ra Rb 0N0TA0
00000

FSL Rb[28:31] := Ra (data write)
MSR[C] := FSL_M_Full if N = 1

TNECAGETD Rd,Rb 010011 Rd 00000 Rb 0N1TAE
00000

Rd := FSL Rb[28:31] (control read)
MSR[FSL] := 1 if (FSL_S_Control = 0)
MSR[C] := not FSL_S_Exists if N = 1

TNCAPUTD Ra,Rb 010011 00000 Ra Rb 0N1TA0
00000

FSL Rb[28:31] := Ra (control write)
MSR[C] := FSL_M_Full if N = 1

FADD Rd,Ra,Rb 010110 Rd Ra Rb 00000000000 Rd := Rb+Ra, float1

FRSUB Rd,Ra,Rb 010110 Rd Ra Rb 00010000000 Rd := Rb-Ra, float1

FMUL Rd,Ra,Rb 010110 Rd Ra Rb 00100000000 Rd := Rb*Ra, float1

FDIV Rd,Ra,Rb 010110 Rd Ra Rb 00110000000 Rd := Rb/Ra, float1

FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb 01000000000 Rd := 1 if (Rb = NaN or Ra = NaN, float1)
else
Rd := 0

FCMP.LT Rd,Ra,Rb 010110 Rd Ra Rb 01000010000 Rd := 1 if (Rb < Ra, float1) else
Rd := 0

FCMP.EQ Rd,Ra,Rb 010110 Rd Ra Rb 01000100000 Rd := 1 if (Rb = Ra, float1) else
Rd := 0

FCMP.LE Rd,Ra,Rb 010110 Rd Ra Rb 01000110000 Rd := 1 if (Rb <= Ra, float1) else
Rd := 0

FCMP.GT Rd,Ra,Rb 010110 Rd Ra Rb 01001000000 Rd := 1 if (Rb > Ra, float1) else
Rd := 0

FCMP.NE Rd,Ra,Rb 010110 Rd Ra Rb 01001010000 Rd := 1 if (Rb != Ra, float1) else
Rd := 0

FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb 01001100000 Rd := 1 if (Rb >= Ra, float1) else
Rd := 0

FLT Rd,Ra 010110 Rd Ra 0 01010000000 Rd := float (Ra)1

FINT Rd,Ra 010110 Rd Ra 0 01100000000 Rd := int (Ra)1

FSQRT Rd,Ra 010110 Rd Ra 0 01110000000 Rd := sqrt (Ra)1

TNEAGET Rd,FSLx 011011 Rd 00000 0N0TAE000000 &
FSLx

Rd := FSLx (data read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 1)
MSR[C] := not FSLx_S_Exists if N = 1

TNAPUT Ra,FSLx 011011 00000 Ra 1N0TA0000000 &
FSLx

FSLx := Ra (data write, blocking if N = 0)
MSR[C] := FSLx_M_Full if N = 1

TNECAGET Rd,FSLx 011011 Rd 00000 0N1TAE000000 &
FSLx

Rd := FSLx (control read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 0)
MSR[C] := not FSLx_S_Exists if N = 1

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 17
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
TNCAPUT Ra,FSLx 011011 00000 Ra 1N1TA0000000 &
FSLx

FSLx := Ra (control write, blocking if N = 0)
MSR[C] := FSLx_M_Full if N = 1

OR Rd,Ra,Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

ANDN Rd,Ra,Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb

PCMPBF Rd,Ra,Rb 100000 Rd Ra Rb 10000000000 Rd := 1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15]) else
Rd := 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd := 0

PCMPEQ Rd,Ra,Rb 100010 Rd Ra Rb 10000000000 Rd := 1 if (Rd = Ra) else
Rd := 0

PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb 10000000000 Rd := 1 if (Rd != Ra) else
Rd := 0

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := s(Ra >> 1)
C := Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd := C & (Ra >> 1)
C := Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd := 0 & (Ra >> 1)
C := Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd := s(Ra[24:31])

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd := s(Ra[16:31])

CLZ Rd, Ra 100100 Rd Ra 0000000011100000 Rd = clz(Ra)

WIC Ra,Rb 100100 00000 Ra Rb 00001101000 ICache_Line[Ra >> 4].Tag := 0 if
(C_ICACHE_LINE_LEN = 4)

ICache_Line[Ra >> 5].Tag := 0 if
(C_ICACHE_LINE_LEN = 8)

WDC Ra,Rb 100100 00000 Ra Rb 00001100100 Cache line is cleared, discarding stored data.

DCache_Line[Ra >> 4].Tag := 0 if
(C_DCACHE_LINE_LEN = 4)

DCache_Line[Ra >> 5].Tag := 0 if
(C_DCACHE_LINE_LEN = 8)

WDC.FLUSH Ra,Rb 100100 00000 Ra Rb 00001110100 Cache line is flushed, writing stored data to
memory, and then cleared. Used when
C_DCACHE_USE_WRITEBACK = 1.

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
18 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
WDC.CLEAR Ra,Rb 100100 00000 Ra Rb 00001110110 Cache line with matching address is cleared,
discarding stored data. Used when
C_DCACHE_USE_WRITEBACK = 1.

MBAR Imm 101110 Imm 00010 0000000000000100 PC := PC + 4; Wait for memory accesses.

MTS Sd,Ra 100101 00000 Ra 11 & Sd SPR[Sd] := Ra, where:

 SPR[0x0001] is MSR

 SPR[0x0007] is FSR

 SPR[0x0800] is SLR

 SPR[0x0802] is SHR

 SPR[0x1000] is PID

 SPR[0x1001] is ZPR

 SPR[0x1002] is TLBX

 SPR[0x1003] is TLBLO

 SPR[0x1004] is TLBHI

 SPR[0x1005] is TLBSX

MFS Rd,Sa 100101 Rd 00000 10 & Sa Rd := SPR[Sa], where:

 SPR[0x0000] is PC

 SPR[0x0001] is MSR

 SPR[0x0003] is EAR

 SPR[0x0005] is ESR

 SPR[0x0007] is FSR

 SPR[0x000B] is BTR

 SPR[0x000D] is EDR

 SPR[0x0800] is SLR

 SPR[0x0802] is SHR

 SPR[0x1000] is PID

 SPR[0x1001] is ZPR

 SPR[0x1002] is TLBX

 SPR[0x1003] is TLBLO

 SPR[0x1004] is TLBHI

 SPR[0x2000 to 0x200B] is PVR[0 to 11]

MSRCLR Rd,Imm 100101 Rd 00001 00 & Imm14 Rd := MSR
MSR := MSR and Imm14

MSRSET Rd,Imm 100101 Rd 00000 00 & Imm14 Rd := MSR
MSR := MSR or Imm14

BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb

BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb

BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb
Rd := PC

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 19
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb

BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb

BRALD Rd,Rb 100110 Rd 11100 Rb 00000000000 PC := Rb
Rd := PC

BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 PC := Rb
Rd := PC
MSR[BIP] := 1

BEQ Ra,Rb 100111 00000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

BNE Ra,Rb 100111 00001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLT Ra,Rb 100111 00010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLE Ra,Rb 100111 00011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGT Ra,Rb 100111 00100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGE Ra,Rb 100111 00101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

BEQD Ra,Rb 100111 10000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

BNED Ra,Rb 100111 10001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLTD Ra,Rb 100111 10010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLED Ra,Rb 100111 10011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGTD Ra,Rb 100111 10100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGED Ra,Rb 100111 10101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)

XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)

ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)

IMM Imm 101100 00000 00000 Imm Imm[0:15] := Imm

RTSD Ra,Imm 101101 10000 Ra Imm PC := Ra + s(Imm)

RTID Ra,Imm 101101 10001 Ra Imm PC := Ra + s(Imm)
MSR[IE] := 1

RTBD Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm)
MSR[BIP] := 0

RTED Ra,Imm 101101 10100 Ra Imm PC := Ra + s(Imm)
MSR[EE] := 1, MSR[EIP] := 0
ESR := 0

BRI Imm 101110 00000 00000 Imm PC := PC + s(Imm)

BRID Imm 101110 00000 10000 Imm PC := PC + s(Imm)

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
20 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm)
Rd := PC

BRAI Imm 101110 00000 01000 Imm PC := s(Imm)

BRAID Imm 101110 00000 11000 Imm PC := s(Imm)

BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm)
Rd := PC

BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm)
Rd := PC
MSR[BIP] := 1

BEQI Ra,Imm 101111 00000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEI Ra,Imm 101111 00001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTI Ra,Imm 101111 00010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEI Ra,Imm 101111 00011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTI Ra,Imm 101111 00100 Ra Imm PC := PC + s(Imm) if Ra > 0

BGEI Ra,Imm 101111 00101 Ra Imm PC := PC + s(Imm) if Ra >= 0

BEQID Ra,Imm 101111 10000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEID Ra,Imm 101111 10001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTID Ra,Imm 101111 10010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEID Ra,Imm 101111 10011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTID Ra,Imm 101111 10100 Ra Imm PC := PC + s(Imm) if Ra > 0

BGEID Ra,Imm 101111 10101 Ra Imm PC := PC + s(Imm) if Ra >= 0

LBU Rd,Ra,Rb

LBUR Rd,Ra,Rb

110000 Rd Ra Rb 00000000000

01000000000

Addr := Ra + Rb
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHU Rd,Ra,Rb

LHUR Rd,Ra,Rb

110001 Rd Ra Rb 00000000000

01000000000

Addr := Ra + Rb
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LW Rd,Ra,Rb
LWR Rd,Ra,Rb

110010 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd := *Addr

LWX Rd,Ra,Rb 110010 Rd Ra Rb 10000000000 Addr := Ra + Rb
Rd := *Addr
Reservation := 1

SB Rd,Ra,Rb

SBR Rd,Ra,Rb

110100 Rd Ra Rb 00000000000

01000000000

Addr := Ra + Rb
*Addr[0:8] := Rd[24:31]

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 21
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Semaphore Synchronization
The LWX and SWX. instructions are used to implement common semaphore operations, including
test and set, compare and swap, exchange memory, and fetch and add. They are also used to
implement spinlocks.

These instructions are typically used by system programs and are called by application programs as
needed. Generally, a program uses LWX to load a semaphore from memory, causing the reservation
to be set (the processor maintains the reservation internally). The program can compute a result
based on the semaphore value and conditionally store the result back to the same memory location
using the SWX instruction. The conditional store is performed based on the existence of the
reservation established by the preceding LWX instruction. If the reservation exists when the store is
executed, the store is performed and MSR[C] is cleared to 0. If the reservation does not exist when
the store is executed, the target memory location is not modified and MSR[C] is set to 1.

If the store is successful, the sequence of instructions from the semaphore load to the semaphore
store appear to be executed atomically—no other device modified the semaphore location between
the read and the update. Other devices can read from the semaphore location during the operation.
For a semaphore operation to work properly, the LWX instruction must be paired with an SWX
instruction, and both must specify identical addresses. The reservation granularity in MicroBlaze is

SH Rd,Ra,Rb

SHR Rd,Ra,Rb

110101 Rd Ra Rb 00000000000

01000000000

Addr := Ra + Rb
*Addr[0:16] := Rd[16:31]

SW Rd,Ra,Rb
SWR Rd,Ra,Rb

110110 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr := Rd

SWX Rd,Ra,Rb 110110 Rd Ra Rb 10000000000 Addr := Ra + Rb
*Addr := Rd if Reservation = 1
Reservation := 0

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr

SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]

SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]

SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)
*Addr := Rd

1. Due to the many different corner cases involved in floating point arithmetic, only the normal behavior is described. A full description of the
behavior can be found in Chapter 5, “MicroBlaze Instruction Set Architecture.”

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
22 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
a word. For both instructions, the address must be word aligned. No unaligned exceptions are
generated for these instructions.

The conditional store is always performed when a reservation exists, even if the store address does
not match the load address that set the reservation.

Only one reservation can be maintained at a time. The address associated with the reservation can be
changed by executing a subsequent LWX instruction. The conditional store is performed based upon
the reservation established by the last LWX instruction executed. Executing an SWX instruction
always clears a reservation held by the processor, whether the address matches that established by
the LWX or not.

Reset, interrupts, exceptions, and breaks (including the BRK and BRKI instructions) all clear the
reservation.

The following provides general guidelines for using the LWX and SWX instructions:

 The LWX and SWX instructions should be paired and use the same address.

 An unpaired SWX instruction to an arbitrary address can be used to clear any reservation held
by the processor.

 A conditional sequence begins with an LWX instruction. It can be followed by memory
accesses and/or computations on the loaded value. The sequence ends with an SWX
instruction. In most cases, failure of the SWX instruction should cause a branch back to the
LWX for a repeated attempt.

 An LWX instruction can be left unpaired when executing certain synchronization primitives if
the value loaded by the LWX is not zero. An implementation of Test and Set exemplifies this:

loop: lwx r5,r3,r0 ; load and reserve
bnei r5,next ; branch if not equal to zero
addik r5,r5,1 ; increment value
swx r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5,loop ; loop if reservation lost

next:

 Performance can be improved by minimizing looping on an LWX instruction that fails to
return a desired value. Performance can also be improved by using an ordinary load instruction
to do the initial value check. An implementation of a spinlock exemplifies this:

loop: lw r5,r3,r0 ; load the word
bnei r5,loop ; loop back if word not equal to 0
lwx r5,r3,r0 ; try reserving again
bnei r5,loop ; likely that no branch is needed
addik r5,r5,1 ; increment value
swx r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5,loop ; loop if reservation lost

 Minimizing the looping on an LWX/SWX instruction pair increases the likelihood that forward
progress is made. The old value should be tested before attempting the store. If the order is
reversed (store before load), more SWX instructions are executed and reservations are more
likely to be lost between the LWX and SWX instructions.
MicroBlaze Processor Reference Guide www.xilinx.com 23
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Self-modifying Code
When using self-modifying code software must ensure that the modified instructions have been
written to memory prior to fetching them for execution. There are several aspects to consider:

 The instructions to be modified may already have been fetched prior to modification:

 into the instruction prefetch buffer,

 into the instruction cache, if it is enabled,

 into a stream buffer, if instruction cache stream buffers are used,

 into the instruction cache, and then saved in a victim buffer, if victim buffers are used.

To ensure that the modified code is always executed instead of the old unmodified code,
software must handle all these cases.

 If one or more of the instructions to be modified is a branch, and the branch target cache is
used, the branch target address may have been cached.

To avoid using the cached branch target address, software must ensure that the branch target
cache is cleared prior to executing the modified code.

 The modified instructions may not have been written to memory prior to execution:

 they may be en route to memory, in temporary storage in the interconnect or the memory
controller,

 they may be stored in the data cache, if write-back cache is used,

 they may be saved in a victim buffer, if write-back cache and victim buffers are used.

Software must ensure that the modified instructions have been written to memory before being
fetched by the processor.

The annotated code below shows how each of the above issues can be addressed. This code assumes
that both instruction cache and write-back data cache is used. If not, the corresponding instructions
can be omitted.

The following code exemplifies storing a modified instruction, when using AXI interconnect:

swi r5,r6,0 ; r5 = new instruction
; r6 = physical instruction address

wdc.flush r6,r0 ; flush write-back data cache line
mbar 1 ; ensure new instruction is written to memory
wic r7,r0 ; invalidate line, empty stream & victim buffers

; r7 = virtual instruction address
mbar 2 ; empty prefetch buffer, clear branch target cache

The following code exemplifies storing a modified instruction, when using XCL:

swi r5,r6,0 ; r5 = new instruction
; r6 = physical instruction address

wdc.flush r6,r0 ; flush write-back data cache line
lwi r0,r6,0 ; read back new instruction from memory to ensure it

; has been written to memory
wic r7,r0 ; invalidate line, empty stream & victim buffers

; r7 = virtual instruction address
mbar 2 ; empty prefetch buffer, clear branch target cache

The physical and virtual addresses above are identical, unless MMU virtual mode is used. If the
MMU is enabled, the code sequences must be executed in real mode, since WIC and WDC are
privileged instructions.

The first instruction after the code sequences above must not be modified, since it may have been
prefetched.
24 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Registers
MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit general purpose
registers and up to eighteen 32-bit special purpose registers, depending on configured options.

General Purpose Registers
The thirty-two 32-bit General Purpose Registers are numbered R0 through R31. The register file is
reset on bit stream download (reset value is 0x00000000). Figure 2-2 is a representation of a General
Purpose Register and Table 2-7 provides a description of each register and the register reset value (if
existing).

Note: The register file is not reset by the external reset inputs: Reset, MB_Reset and Debug_Rst.

Refer to Table 4-2 for software conventions on general purpose register usage.

0 31

R0-R31

Figure 2-2: R0-R31

Table 2-7: General Purpose Registers (R0-R31)

Bits Name Description Reset Value

0:31 R0 Always has a value of zero. Anything written to
R0 is discarded

0x00000000

0:31 R1 through R13 32-bit general purpose registers -

0:31 R14 32-bit register used to store return addresses
for interrupts.

-

0:31 R15 32-bit general purpose register. Recommended
for storing return addresses for user vectors.

-

0:31 R16 32-bit register used to store return addresses
for breaks.

-

0:31 R17 If MicroBlaze is configured to support
hardware exceptions, this register is loaded
with the address of the instruction following
the instruction causing the HW exception,
except for exceptions in delay slots that use
BTR instead (see “Branch Target Register
(BTR)”); if not, it is a general purpose register.

-

0:31 R18 through R31 R18 through R31 are 32-bit general purpose
registers.

-

MicroBlaze Processor Reference Guide www.xilinx.com 25
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Special Purpose Registers

Program Counter (PC)

The Program Counter (PC) is the 32-bit address of the execution instruction. It can be read with an
MFS instruction, but it cannot be written with an MTS instruction. When used with the MFS
instruction the PC register is specified by setting Sa = 0x0000. Figure 2-3 illustrates the PC and
Table 2-8 provides a description and reset value.

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It can be read with an
MFS instruction. When reading the MSR, bit 29 is replicated in bit 0 as the carry copy. MSR can be
written using either an MTS instruction or the dedicated MSRSET and MSRCLR instructions.

When writing to the MSR using MSRSET or MSRCLR, the Carry bit takes effect immediately and
the remaining bits take effect one clock cycle later. When writing using MTS, all bits take effect one
clock cycle later. Any value written to bit 0 is discarded.

When used with an MTS or MFS instruction, the MSR is specified by setting Sx = 0x0001.
Figure 2-4 illustrates the MSR register and Table 2-9 provides the bit description and reset values.

0 31

PC

Figure 2-3: PC

Table 2-8: Program Counter (PC)

Bits Name Description Reset Value

0:31 PC Program Counter

Address of executing instruction, that is, “mfs r2 0” stores
the address of the mfs instruction itself in R2.

0x00000000

0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CC RESERVED VMS VM UMS UM PVR EIP EE DCE DZO ICE FSL BIP C IE RES

Figure 2-4: MSR
26 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Table 2-9: Machine Status Register (MSR)

Bits Name Description Reset Value

0 CC Arithmetic Carry Copy

Copy of the Arithmetic Carry (bit 29). CC is always the
same as bit C.

0

1:16 Reserved

17 VMS Virtual Protected Mode Save

Only available when configured with an MMU
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0)

Read/Write

0

18 VM Virtual Protected Mode

0 = MMU address translation and access protection
disabled, with C_USE_MMU = 3 (Virtual). Access protection
disabled with C_USE_MMU = 2 (Protection)

1 = MMU address translation and access protection enabled,
with C_USE_MMU = 3 (Virtual). Access protection enabled,
with C_USE_MMU = 2 (Protection).

Only available when configured with an MMU
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0)

Read/Write

0

19 UMS User Mode Save

Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0)

Read/Write

0

20 UM User Mode

0 = Privileged Mode, all instructions are allowed

1 = User Mode, certain instructions are not allowed

Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0)

Read/Write

0

21 PVR Processor Version Register exists

0 = No Processor Version Register
1 = Processor Version Register exists

Read only

Based on
parameter
C_PVR

22 EIP Exception In Progress

0 = No hardware exception in progress
1 = Hardware exception in progress

Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)

Read/Write

0

MicroBlaze Processor Reference Guide www.xilinx.com 27
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
23 EE Exception Enable

0 = Hardware exceptions disabled1
1 = Hardware exceptions enabled

Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)

Read/Write

0

24 DCE Data Cache Enable

0 = Data Cache disabled
1 = Data Cache enabled

Only available if configured to use data cache
(C_USE_DCACHE = 1)

Read/Write

0

25 DZO Division by Zero or Division Overflow2

0 = No division by zero or division overflow has occurred
1 = Division by zero or division overflow has occurred

Only available if configured to use hardware divider
(C_USE_DIV = 1)

Read/Write

0

26 ICE Instruction Cache Enable

0 = Instruction Cache disabled
1 = Instruction Cache enabled

Only available if configured to use instruction cache
(C_USE_ICACHE = 1)

Read/Write

0

27 FSL Stream (FSL or AXI) Error

0 = get or getd had no error
1 = get or getd control type mismatch

This bit is sticky, i.e. it is set by a get or getd instruction
when a control bit mismatch occurs. To clear it an mts or
msrclr instruction must be used.

Only available if configured to use stream links
(C_FSL_LINKS > 0)

Read/Write

0

28 BIP Break in Progress

0 = No Break in Progress
1 = Break in Progress

Break Sources can be software break instruction or hardware
break from Ext_Brk or Ext_NM_Brk pin.

Read/Write

0

Table 2-9: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value
28 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
29 C Arithmetic Carry

0 = No Carry (Borrow)
1 = Carry (No Borrow)

Read/Write

0

30 IE Interrupt Enable

0 = Interrupts disabled
1 = Interrupts enabled

Read/Write

0

31 - Reserved 0

1. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception,
Instruction TLB Miss Exception) cannot be disabled, and are not affected by this bit.

2. This bit is only used for integer divide-by-zero or divide overflow signaling. There is a floating point equivalent
in the FSR. The DZO-bit flags divide by zero or divide overflow conditions regardless if the processor is
configured with exception handling or not.

Table 2-9: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value
MicroBlaze Processor Reference Guide www.xilinx.com 29
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the exception for the
following:

 An unaligned access exception that means the unaligned access address

 A DPLB or M_AXI_DP exception that specifies the failing PLB or AXI4 data access address

 A data storage exception that specifies the (virtual) effective address accessed

 An instruction storage exception that specifies the (virtual) effective address read

 A data TLB miss exception that specifies the (virtual) effective address accessed

 An instruction TLB miss exception that specifies the (virtual) effective address read

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EAR is specified by setting Sa = 0x0003. The EAR register is illustrated in
Figure 2-5 and Table 2-10 provides bit descriptions and reset values.

0 31

EAR

Figure 2-5: EAR

Table 2-10: Exception Address Register (EAR)

Bits Name Description Reset Value

0:31 EAR Exception Address Register 0x00000000
30 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. When read with the MFS
instruction, the ESR is specified by setting Sa = 0x0005. The ESR register is illustrated in
Figure 2-6, Table 2-11 provides bit descriptions and reset values, and Table 2-12 provides the
Exception Specific Status (ESS).

19 20 26 27 31

 ¦
RESERVED DS ESS EC

Figure 2-6: ESR

Table 2-11: Exception Status Register (ESR)

Bits Name Description Reset Value

0:18 Reserved

19 DS Delay Slot Exception.

0 = not caused by delay slot instruction
1 = caused by delay slot instruction

Read-only

0

20:26 ESS Exception Specific Status

For details refer to Table 2-12.

Read-only

See Table 2-12

27:31 EC Exception Cause

00000 = Stream exception
00001 = Unaligned data access exception
00010 = Illegal op-code exception
00011 = Instruction bus error exception
00100 = Data bus error exception
00101 = Divide exception
00110 = Floating point unit exception
00111 = Privileged instruction exception
00111 = Stack protection violation exception
10000 = Data storage exception
10001 = Instruction storage exception
10010 = Data TLB miss exception
10011 = Instruction TLB miss exception

Read-only

0

MicroBlaze Processor Reference Guide www.xilinx.com 31
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Table 2-12: Exception Specific Status (ESS)

Exception
Cause

Bits Name Description Reset Value

Unaligned
Data Access

20 W Word Access Exception

0 = unaligned halfword access

1 = unaligned word access

0

21 S Store Access Exception

0 = unaligned load access

1 = unaligned store access

0

22:26 Rx Source/Destination Register

General purpose register used as
source (Store) or destination (Load)
in unaligned access

0

Illegal
Instruction

20:26 Reserved 0

Instruction
bus error

20 ECC Exception caused by ILMB
correctable or uncorrectable error

0

21:26 Reserved 0

Data bus
error

20 ECC Exception caused by DLMB
correctable or uncorrectable error

0

21:26 Reserved 0

Divide 20 DEC Divide - Division exception cause

0 = Divide-By-Zero

1 = Division Overflow

0

21:26 Reserved 0

Floating
point unit

20:26 Reserved 0

Privileged
instruction

20:26 Reserved 0

Stack
protection
violation

20:26 Reserved 0

Stream 20:22 Reserved 0

23:26 FSL Stream (FSL or AXI) index that
caused the exception

0

Data storage 20 DIZ Data storage - Zone protection

0 = Did not occur
1 = Occurred

0

21 S Data storage - Store instruction

0 = Did not occur
1 = Occurred

0

22:26 Reserved 0
32 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Branch Target Register (BTR)

The Branch Target Register only exists if the MicroBlaze processor is configured to use exceptions.
The register stores the branch target address for all delay slot branch instructions executed while
MSR[EIP] = 0. If an exception is caused by an instruction in a delay slot (that is, ESR[DS]=1), the
exception handler should return execution to the address stored in BTR instead of the normal
exception return address stored in R17. When read with the MFS instruction, the BTR is specified
by setting Sa = 0x000B. The BTR register is illustrated in Figure 2-7 and Table 2-13 provides bit
descriptions and reset values.

Instruction
storage

20 DIZ Instruction storage - Zone protection

0 = Did not occur
1 = Occurred

0

21:26 Reserved 0

Data TLB
miss

20 Reserved 0

21 S Data TLB miss - Store instruction

0 = Did not occur
1 = Occurred

0

22:26 Reserved 0

Instruction
TLB miss

20:26 Reserved 0

Table 2-12: Exception Specific Status (ESS) (Continued)

Exception
Cause

Bits Name Description Reset Value

0 31

BTR

Figure 2-7: BTR

Table 2-13: Branch Target Register (BTR)

Bits Name Description Reset Value

0:31 BTR Branch target address used by handler when
returning from an exception caused by an
instruction in a delay slot.

Read-only

0x00000000
MicroBlaze Processor Reference Guide www.xilinx.com 33
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Floating Point Status Register (FSR)

The Floating Point Status Register contains status bits for the floating point unit. It can be read with
an MFS, and written with an MTS instruction. When read or written, the register is specified by
setting Sa = 0x0007. The bits in this register are sticky floating point instructions can only set bits
in the register, and the only way to clear the register is by using the MTS instruction. Figure 2-8
illustrates the FSR register and Table 2-14 provides bit descriptions and reset values.

Exception Data Register (EDR)

The Exception Data Register stores data read on a stream link (FSL or AXI) that caused a stream
exception.

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EDR is specified by setting Sa = 0x000D. Figure 2-9 illustrates the EDR register and
Table 2-15 provides bit descriptions and reset values.

Note: The register is only implemented if C_FSL_LINKS is greater than 0 and C_FSL_EXCEPTION
is set to 1.

27 28 29 30 31

RESERVED IO DZ OF UF DO

Figure 2-8: FSR

Table 2-14: Floating Point Status Register (FSR)

Bits Name Description Reset Value

0:26 Reserved undefined

27 IO Invalid operation 0

28 DZ Divide-by-zero 0

29 OF Overflow 0

30 UF Underflow 0

31 DO Denormalized operand error 0

0 31

EDR

Figure 2-9: EDR

Table 2-15: Exception Data Register (EDR)

Bits Name Description Reset Value

0:31 EDR Exception Data Register 0x00000000
34 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Stack Low Register (SLR)

The Stack Low Register stores the stack low limit use to detect stack overflow. When the address of
a load or store instruction using the stack pointer (register R1) as rA is less than the Stack Low
Register, a stack overflow occurs, causing a Stack Protection Violation exception if exceptions are
enabled in MSR.

When read with the MFS instruction, the SLR is specified by setting Sa = 0x0800. Figure 2-10
illustrates the SLR register and Table 2-16 provides bit descriptions and reset values.

Note: The register is only implemented if C_USE_STACK_PROTECTION is set to 1.

Stack High Register (SHR)

The Stack High Register stores the stack high limit use to detect stack underflow. When the address
of a load or store instruction using the stack pointer (register R1) as rA is greater than the Stack High
Register, a stack underflow occurs, causing a Stack Protection Violation exception if exceptions are
enabled in MSR.

When read with the MFS instruction, the SHR is specified by setting Sa = 0x0802. Figure 2-11
illustrates the SHR register and Table 2-17 provides bit descriptions and reset values.

Note: The register is only implemented if C_USE_STACK_PROTECTION is set to 1.

0 31

SLR

Figure 2-10: SLR

Table 2-16: Stack Low Register (SLR)

Bits Name Description Reset Value

0:31 SLR Stack Low Register 0x00000000

0 31

SHR

Figure 2-11: SHR

Table 2-17: Stack High Register (SHR)

Bits Name Description Reset Value

0:31 SHR Stack High Register 0xFFFFFFFF
MicroBlaze Processor Reference Guide www.xilinx.com 35
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Process Identifier Register (PID)

The Process Identifier Register is used to uniquely identify a software process during MMU address
translation. It is controlled by the C_USE_MMU configuration option on MicroBlaze. The register is
only implemented if C_USE_MMU is greater than 1 (User Mode) and C_AREA_OPTIMIZED is set
to 0. When accessed with the MFS and MTS instructions, the PID is specified by setting Sa =
0x1000. The register is accessible according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

 When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is stored in the
TID field of the TLB entry

 When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

Figure 2-12 illustrates the PID register and Table 2-18 provides bit descriptions and reset values.

24 31

RESERVED PID

Figure 2-12: PID

Table 2-18: Process Identifier Register (PID)

Bits Name Description Reset Value

0:23 Reserved

24:31 PID Used to uniquely identify a software process during
MMU address translation.

Read/Write

0x00
36 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Zone Protection Register (ZPR)

The Zone Protection Register is used to override MMU memory protection defined in TLB entries.
It is controlled by the C_USE_MMU configuration option on MicroBlaze. The register is only
implemented if C_USE_MMU is greater than 1 (User Mode), C_AREA_OPTIMIZED is set to 0, and
if the number of specified memory protection zones is greater than zero (C_MMU_ZONES > 0). The
implemented register bits depend on the number of specified memory protection zones
(C_MMU_ZONES). When accessed with the MFS and MTS instructions, the ZPR is specified by
setting Sa = 0x1001. The register is accessible according to the memory management special
registers parameter C_MMU_TLB_ACCESS. Figure 2-13 illustrates the ZPR register and Table 2-19
provides bit descriptions and reset values.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

ZP0 ZP1 ZP2 ZP3 ZP4 ZP5 ZP6 ZP7 ZP8 ZP9 ZP10 ZP11 ZP12 ZP13 ZP14 ZP15

Figure 2-13: ZPR

Table 2-19: Zone Protection Register (ZPR)

Bits Name Description Reset Value

0:1

2:3

...

30:31

ZP0

ZP1

...

ZP15

Zone Protect

User mode (MSR[UM] = 1):

00 = Override V in TLB entry. No access to the page is
allowed
01 = No override. Use V, WR and EX from TLB entry
10 = No override. Use V, WR and EX from TLB entry
11 = Override WR and EX in TLB entry. Access the page
as writable and executable

Privileged mode (MSR[UM] = 0):

00 = No override. Use V, WR and EX from TLB entry
01 = No override. Use V, WR and EX from TLB entry
10 = Override WR and EX in TLB entry. Access the page
as writable and executable
11 = Override WR and EX in TLB entry. Access the page
as writable and executable

Read/Write

0x00000000
MicroBlaze Processor Reference Guide www.xilinx.com 37
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer Low Register (TLBLO)

The Translation Look-Aside Buffer Low Register is used to access MMU Unified Translation Look-
Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU configuration option on
MicroBlaze. The register is only implemented if C_USE_MMU is greater than 1 (User Mode), and
C_AREA_OPTIMIZED is set to 0. When accessed with the MFS and MTS instructions, the TLBLO
is specified by setting Sa = 0x1003. When reading or writing TLBLO, the UTLB entry indexed by
the TLBX register is accessed. The register is readable according to the memory management
special registers parameter C_MMU_TLB_ACCESS.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO entries).

Note: The UTLB is not reset by the external reset inputs: Reset, MB_Reset and Debug_Rst.

Figure 2-14 illustrates the TLBLO register and Table 2-20 provides bit descriptions and reset
values.

0 22 23 24 28 29 30 31

RPN EX WR ZSEL W I M G

Figure 2-14: TLBLO

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO)

Bits Name Description Reset Value

0:21 RPN Real Page Number or Physical Page Number

When a TLB hit occurs, this field is read from the TLB
entry and is used to form the physical address. Depending
on the value of the SIZE field, some of the RPN bits are
not used in the physical address. Software must clear
unused bits in this field to zero.

Only defined when C_USE_MMU=3 (Virtual).

Read/Write

0x000000

22 EX Executable

When bit is set to 1, the page contains executable code,
and instructions can be fetched from the page. When bit is
cleared to 0, instructions cannot be fetched from the page.
Attempts to fetch instructions from a page with a clear EX
bit cause an instruction-storage exception.

Read/Write

0

38 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
23 WR Writable

When bit is set to 1, the page is writable and store
instructions can be used to store data at addresses within
the page.

When bit is cleared to 0, the page is read-only (not
writable). Attempts to store data into a page with a clear
WR bit cause a data storage exception.

Read/Write

0

24:27 ZSEL Zone Select

This field selects one of 16 zone fields (Z0-Z15) from the
zone-protection register (ZPR).
For example, if ZSEL 0x5, zone field Z5 is selected. The
selected ZPR field is used to modify the access protection
specified by the TLB entry EX and WR fields. It is also
used to prevent access to a page by overriding the TLB V
(valid) field.

Read/Write

0x0

28 W Write Through

When the parameter C_DCACHE_USE_WRITEBACK is
set to 1, this bit controls caching policy. A write-through
policy is selected when set to 1, and a write-back policy is
selected otherwise.

This bit is fixed to 1, and write-through is always used,
when C_DCACHE_USE_WRITEBACK is cleared to 0.

Read/Write

0/1

29 I Inhibit Caching

When bit is set to 1, accesses to the page are not cached
(caching is inhibited).

When cleared to 0, accesses to the page are cacheable.

Read/Write

0

30 M Memory Coherent

This bit is fixed to 0, because memory coherence is not
implemented on MicroBlaze.

Read Only

0

31 G Guarded

When bit is set to 1, speculative page accesses are not
allowed (memory is guarded).

When cleared to 0, speculative page accesses are allowed.

The G attribute can be used to protect memory-mapped
I/O devices from inappropriate instruction accesses.

Read/Write

0

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO) (Continued)

Bits Name Description Reset Value
MicroBlaze Processor Reference Guide www.xilinx.com 39
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer High Register (TLBHI)

The Translation Look-Aside Buffer High Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU configuration option on
MicroBlaze. The register is only implemented if C_USE_MMU is greater than 1 (User Mode), and
C_AREA_OPTIMIZED is set to 0. When accessed with the MFS and MTS instructions, the TLBHI
is specified by setting Sa = 0x1004. When reading or writing TLBHI, the UTLB entry indexed by
the TLBX register is accessed. The register is readable according to the memory management
special registers parameter C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

 When writing TLBHI the value of PID is stored in the TID field of the TLB entry

 When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI entries).

Note: The UTLB is not reset by the external reset inputs: Reset, MB_Reset and Debug_Rst.

Figure 2-15 illustrates the TLBHI register and Table 2-21 provides bit descriptions and reset values.

0 22 25 26 27 28 31

TAG SIZE V E U0 Reserved

Figure 2-15: TLBHI

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI)

Bits Name Description
Reset
Value

0:21 TAG TLB-entry tag

Is compared with the page number portion of the virtual
memory address under the control of the SIZE field.

Read/Write

0x000000

22:24 SIZE Size

Specifies the page size. The SIZE field controls the bit
range used in comparing the TAG field with the page
number portion of the virtual memory address. The page
sizes defined by this field are listed in Table 2-36.

Read/Write

000

25 V Valid

When this bit is set to 1, the TLB entry is valid and
contains a page-translation entry.

When cleared to 0, the TLB entry is invalid.

Read/Write

0

40 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
26 E Endian

When this bit is set to 1, a the page is accessed as a little
endian page if C_ENDIANNESS is 0 (Big Endian), or as
a big endian page otherwise.

When cleared to 0, the page is accessed as a big endian
page if C_ENDIANNESS is 0 (Big Endian), or as a little
endian page otherwise.

The E bit only affects data read or data write accesses.
Instruction accesses are not affected..

Read/Write

0

27 U0 User Defined

This bit is fixed to 0, since there are no user defined
storage attributes on MicroBlaze.

Read Only

0

28:31 Reserved

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI) (Continued)

Bits Name Description
Reset
Value
MicroBlaze Processor Reference Guide www.xilinx.com 41
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer Index Register (TLBX)

The Translation Look-Aside Buffer Index Register is used as an index to the Unified Translation
Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI registers. It is controlled by the
C_USE_MMU configuration option on MicroBlaze. The register is only implemented if
C_USE_MMU is greater than 1 (User Mode), and C_AREA_OPTIMIZED is set to 0. When accessed
with the MFS and MTS instructions, the TLBX is specified by setting Sa = 0x1002. Figure 2-16
illustrates the TLBX register and Table 2-22 provides bit descriptions and reset values.

0 26 31

MISS Reserved INDEX

Figure 2-16: TLBX

Table 2-22: Translation Look-Aside Buffer Index Register (TLBX)

Bits Name Description Reset Value

0 MISS TLB Miss

This bit is cleared to 0 when the TLBSX register is
written with a virtual address, and the virtual address is
found in a TLB entry.
The bit is set to 1 if the virtual address is not found. It is
also cleared when the TLBX register itself is written.

Read Only

Can be read if the memory management special registers
parameter C_MMU_TLB_ACCESS > 0 (MINIMAL).

0

1:25 Reserved

26:31 INDEX TLB Index

This field is used to index the Translation Look-Aside
Buffer entry accessed by the TLBLO and TLBHI
registers. The field is updated with a TLB index when the
TLBSX register is written with a virtual address, and the
virtual address is found in the corresponding TLB entry.

Read/Write

Can be read and written if the memory management
special registers parameter C_MMU_TLB_ACCESS > 0
(MINIMAL).

000000
42 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Translation Look-Aside Buffer Search Index Register (TLBSX)

The Translation Look-Aside Buffer Search Index Register is used to search for a virtual page
number in the Unified Translation Look-Aside Buffer (UTLB). It is controlled by the C_USE_MMU
configuration option on MicroBlaze. The register is only implemented if C_USE_MMU is greater
than 1 (User Mode), and C_AREA_OPTIMIZED is set to 0. When written with the MTS instruction,
the TLBSX is specified by setting Sa = 0x1005. Figure 2-17 illustrates the TLBSX register and
Table 2-23 provides bit descriptions and reset values.

0 22 31

VPN Reserved

Figure 2-17: TLBSX

Table 2-23: Translation Look-Aside Buffer Index Search Register (TLBSX)

Bits Name Description Reset Value

0:21 VPN Virtual Page Number

This field represents the page number portion of the
virtual memory address. It is compared with the page
number portion of the virtual memory address under the
control of the SIZE field, in each of the Translation Look-
Aside Buffer entries that have the V bit set to 1.

If the virtual page number is found, the TLBX register is
written with the index of the TLB entry and the MISS bit
in TLBX is cleared to 0. If the virtual page number is not
found in any of the TLB entries, the MISS bit in the
TLBX register is set to 1.

Write Only

22:31 Reserved
MicroBlaze Processor Reference Guide www.xilinx.com 43
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Processor Version Register (PVR)

The Processor Version Register is controlled by the C_PVR configuration option on MicroBlaze.

 When C_PVR is set to 0 (None) the processor does not implement any PVR and
MSR[PVR]=0.

 When C_PVR is set to 1 (Basic), MicroBlaze implements only the first register: PVR0, and if
set to 2 (Full), all 12 PVR registers (PVR0 to PVR11) are implemented.

When read with the MFS instruction the PVR is specified by setting Sa = 0x200x, with x being the
register number between 0x0 and 0xB.

Table 2-24 through Table 2-35 provide bit descriptions and values.

Table 2-24: Processor Version Register 0 (PVR0)

Bits Name Description Value

0 CFG PVR implementation:
0 = Basic, 1 = Full

Based on C_PVR

1 BS Use barrel shifter C_USE_BARREL

2 DIV Use divider C_USE_DIV

3 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)

4 FPU Use FPU C_USE_FPU > 0 (None)

5 EXC Use any type of exceptions Based on C_*_EXCEPTION
Also set if C_USE_MMU > 0 (None)

6 ICU Use instruction cache C_USE_ICACHE

7 DCU Use data cache C_USE_DCACHE

8 MMU Use MMU C_USE_MMU > 0 (None)

9 BTC Use branch target cache C_USE_BRANCH_TARGET_CACHE

10 ENDI Selected endianness:
0 = Big endian, 1 = Little endian

C_ENDIANNESS

11 FT Implement fault tolerant features C_FAULT_TOLERANT

12 SPROT Use stack protection C_USE_STACK_PROTECTION

13:15 Reserved 0

16:23 MBV MicroBlaze release version code Release Specific

0x1 = v5.00.a
0x2 = v5.00.b
0x3 = v5.00.c
0x4 = v6.00.a
0x6 = v6.00.b
0x5 = v7.00.a
0x7 = v7.00.b
0x8 = v7.10.a
0x9 = v7.10.b
0xA = v7.10.c
0xB = v7.10.d

0xC = v7.20.a
0xD = v7.20.b
0xE = v7.20.c
0xF = v7.20.d
0x10 = v7.30.a
0x11 = v7.30.b
0x12 = v8.00.a
0x13 = v8.00.b
0x14 = v8.10.a
0x15 = v8.20.a

24:31 USR1 User configured value 1 C_PVR_USER1
44 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Table 2-25: Processor Version Register 1 (PVR1)

Bits Name Description Value

0:31 USR2 User configured value 2 C_PVR_USER2

Table 2-26: Processor Version Register 2 (PVR2)

Bits Name Description Value

0 DAXI Data side AXI4 in use C_D_AXI

1 DLMB Data side LMB in use C_D_LMB

2 IAXI Instruction side AXI4 in use C_I_AXI

3 ILMB Instruction side LMB in use C_I_LMB

4 IRQEDGE Interrupt is edge triggered C_INTERRUPT_IS_EDGE

5 IRQPOS Interrupt edge is positive C_EDGE_IS_POSITIVE

6 DPLB Data side PLB in use C_D_PLB

7 IPLB Instruction side PLB in use C_I_PLB

8 INTERCON Use PLB interconnect C_INTERCONNECT = 1 (PLBv46)

9 STREAM Use AXI4-Stream
interconnect

C_STREAM_INTERCONNECT = 1
(AXI4-Stream)

10:11 Reserved

12 FSL Use extended stream (FSL or
AXI) instructions

C_USE_EXTENDED_FSL_INSTR

13 FSLEXC Generate exception for stream
control bit (FSL or AXI)
mismatch

C_FSL_EXCEPTION

14 MSR Use msrset and msrclr
instructions

C_USE_MSR_INSTR

15 PCMP Use pattern compare and CLZ
instructions

C_USE_PCMP_INSTR

16 AREA Select implementation to
optimize area with lower
instruction throughput

C_AREA_OPTIMIZED

17 BS Use barrel shifter C_USE_BARREL

18 DIV Use divider C_USE_DIV

19 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)

20 FPU Use FPU C_USE_FPU > 0 (None)

21 MUL64 Use 64-bit hardware
multiplier

C_USE_HW_MUL = 2 (Mul64)
MicroBlaze Processor Reference Guide www.xilinx.com 45
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
22 FPU2 Use floating point conversion
and square root instructions

C_USE_FPU = 2 (Extended)

23 IPLBEXC Generate exception for IPLB
error

C_IPLB_BUS_EXCEPTION

24 DPLBEXC Generate exception for DPLB
error

C_DPLB_BUS_EXCEPTION

25 OP0EXC Generate exception for 0x0
illegal opcode

C_OPCODE_0x0_ILLEGAL

26 UNEXC Generate exception for
unaligned data access

C_UNALIGNED_EXCEPTIONS

27 OPEXC Generate exception for any
illegal opcode

C_ILL_OPCODE_EXCEPTION

28 AXIIEXC Generate exception for
M_AXI_I error

C_M_AXI_I_BUS_EXCEPTION

29 AXIDEXC Generate exception for
M_AXI_D error

C_M_AXI_D_BUS_EXCEPTION

30 DIVEXC Generate exception for
division by zero or division
overflow

C_DIV_ZERO_EXCEPTION

31 FPUEXC Generate exceptions from
FPU

C_FPU_EXCEPTION

Table 2-27: Processor Version Register 3 (PVR3)

Bits Name Description Value

0 DEBUG Use debug logic C_DEBUG_ENABLED

1:2 Reserved

3:6 PCBRK Number of PC breakpoints C_NUMBER_OF_PC_BRK

7:9 Reserved

10:12 RDADDR Number of read address
breakpoints

C_NUMBER_OF_RD_ADDR_BRK

13:15 Reserved

16:18 WRADDR Number of write address
breakpoints

C_NUMBER_OF_WR_ADDR_BRK

19 Reserved

20:24 FSL Number of stream links C_FSL_LINKS

25:28 Reserved

29:31 BTC_SIZE Branch Target Cache size C_BRANCH_TARGET_CACHE_SIZE

Table 2-26: Processor Version Register 2 (PVR2) (Continued)

Bits Name Description Value
46 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Table 2-28: Processor Version Register 4 (PVR4)

Bits Name Description Value

0 ICU Use instruction cache C_USE_ICACHE

1:5 ICTS Instruction cache tag size C_ADDR_TAG_BITS

6 Reserved 1

7 ICW Allow instruction cache write C_ALLOW_ICACHE_WR

8:10 ICLL The base two logarithm of the
instruction cache line length

log2(C_ICACHE_LINE_LEN)

11:15 ICBS The base two logarithm of the
instruction cache byte size

log2(C_CACHE_BYTE_SIZE)

16 IAU The instruction cache is used for
all memory accesses

C_ICACHE_ALWAYS_USED

17 Reserved 0

18 ICI Instruction cache XCL protocol C_ICACHE_INTERFACE

19:21 ICV Instruction cache victims 0-3: C_ICACHE_VICTIMS = 0,2,4,8

22:23 ICS Instruction cache streams C_ICACHE_STREAMS

24 IFTL Instruction cache tag uses
distributed RAM

C_ICACHE_FORCE_TAG_LUTRAM

25 ICDW Instruction cache data width C_ICACHE_DATA_WIDTH > 0

26:31 Reserved 0

Table 2-29: Processor Version Register 5 (PVR5)

Bits Name Description Value

0 DCU Use data cache C_USE_DCACHE

1:5 DCTS Data cache tag size C_DCACHE_ADDR_TAG

6 Reserved 1

7 DCW Allow data cache write C_ALLOW_DCACHE_WR

8:10 DCLL The base two logarithm of the
data cache line length

log2(C_DCACHE_LINE_LEN)

11:15 DCBS The base two logarithm of the
data cache byte size

log2(C_DCACHE_BYTE_SIZE)

16 DAU The data cache is used for all
memory accesses

C_DCACHE_ALWAYS_USED

17 DWB Data cache policy is write-back C_DCACHE_USE_WRITEBACK

18 DCI Data cache XCL protocol C_DCACHE_INTERFACE
MicroBlaze Processor Reference Guide www.xilinx.com 47
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
19:21 DCV Data cache victims 0-3: C_DCACHE_VICTIMS = 0,2,4,8

22:23 Reserved 0

24 DFTL Data cache tag uses distributed
RAM

C_DCACHE_FORCE_TAG_LUTRAM

25 DCDW Data cache data width C_DCACHE_DATA_WIDTH > 0

26:31 Reserved 0

Table 2-30: Processor Version Register 6 (PVR6)

Bits Name Description Value

0:31 ICBA Instruction Cache Base Address C_ICACHE_BASEADDR

Table 2-31: Processor Version Register 7 (PVR7)

Bits Name Description Value

0:31 ICHA Instruction Cache High Address C_ICACHE_HIGHADDR

Table 2-32: Processor Version Register 8 (PVR8)

Bits Name Description Value

0:31 DCBA Data Cache Base Address C_DCACHE_BASEADDR

Table 2-33: Processor Version Register 9 (PVR9)

Bits Name Description Value

0:31 DCHA Data Cache High Address C_DCACHE_HIGHADDR

Table 2-29: Processor Version Register 5 (PVR5) (Continued)

Bits Name Description Value
48 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Registers
Table 2-34: Processor Version Register 10 (PVR10)

Bits Name Description Value

0:7 ARCH Target architecture: Defined by parameter
C_FAMILY

0x6

0x7

0x8

0x9

0xA

0xB

0xC

0xD

0xE

0xF

0x10

0x11

0x12

=

=

=

=

=

=

=

=

=

=

=

=

=

Spartan®-3, Automotive Spartan-3

Virtex-4, Defence Grade Virtex-4 Q
Space-Grade Virtex-4 QV

Virtex-5, Defence Grade Virtex-5 Q
Space-Grade Virtex-5 QV

Spartan-3E, Automotive Spartan-3E

Spartan-3A, Automotive Spartan-3A

Spartan-3AN

Spartan-3A DSP,
Automotive Spartan-3A DSP

Spartan-6, Automotive Spartan-6,
Defence Grade Spartan-6 Q

Virtex-6, Defence Grade Virtex-6 Q

Virtex-7

Kintex™-7

Artix™-7

Zynq™

8:31 Reserved 0

Table 2-35: Processor Version Register 11 (PVR11)

Bits Name Description Value

0:1 MMU Use MMU: C_USE_MMU

0 = None
1 = User Mode

2 = Protection
3 = Virtual

2:4 ITLB Instruction Shadow TLB size log2(C_MMU_ITLB_SIZE)

5:7 DTLB Data Shadow TLB size log2(C_MMU_DTLB_SIZE)

8:9 TLBACC TLB register access: C_MMU_TLB_ACCESS

0 = Minimal
1 = Read

2 = Write
3 = Full

10:14 ZONES Number of memory protection zones C_MMU_ZONES

15 PRIVINS Privileged instructions:

0 = Full protection
1 = Allow stream instructions

C_MMU_PRIVILEGED_INSTR

16:16 Reserved Reserved for future use 0

17:31 RSTMSR Reset value for MSR C_RESET_MSR
MicroBlaze Processor Reference Guide www.xilinx.com 49
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Pipeline Architecture
MicroBlaze instruction execution is pipelined. For most instructions, each stage takes one clock
cycle to complete. Consequently, the number of clock cycles necessary for a specific instruction to
complete is equal to the number of pipeline stages, and one instruction is completed on every cycle.
A few instructions require multiple clock cycles in the execute stage to complete. This is achieved
by stalling the pipeline.

When executing from slower memory, instruction fetches may take multiple cycles. This additional
latency directly affects the efficiency of the pipeline. MicroBlaze implements an instruction prefetch
buffer that reduces the impact of such multi-cycle instruction memory latency. While the pipeline is
stalled by a multi-cycle instruction in the execution stage, the prefetch buffer continues to load
sequential instructions. When the pipeline resumes execution, the fetch stage can load new
instructions directly from the prefetch buffer instead of waiting for the instruction memory access to
complete. If instructions are modified during execution (e.g. with self-modifying code), the prefetch
buffer should be emptied before executing the modified instructions, to ensure that it does not
contain the old unmodified instructions. The recommended way to do this is using an MBAR
instruction, although it is also possible to use a synchronizing branch instruction, for example BRI 4.

Three Stage Pipeline
With C_AREA_OPTIMIZED set to 1, the pipeline is divided into three stages to minimize hardware
cost: Fetch, Decode, and Execute.

Five Stage Pipeline
With C_AREA_OPTIMIZED set to 0, the pipeline is divided into five stages to maximize
performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and Writeback
(WB).

Branches
Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are flushed
when executing a taken branch. The fetch pipeline stage is then reloaded with a new instruction from
the calculated branch address. A taken branch in MicroBlaze takes three clock cycles to execute,
two of which are required for refilling the pipeline. To reduce this latency overhead, MicroBlaze
supports branches with delay slots.

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7

instruction 1 Fetch Decode Execute

instruction 2 Fetch Decode Execute Execute Execute

instruction 3 Fetch Decode Stall Stall Execute

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9

instruction 1 IF OF EX MEM WB

instruction 2 IF OF EX MEM MEM MEM WB

instruction 3 IF OF EX Stall Stall MEM WB
50 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Pipeline Architecture
Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze is
flushed. The instruction in the decode stage (branch delay slot) is allowed to complete. This
technique effectively reduces the branch penalty from two clock cycles to one. Branch instructions
with delay slots have a D appended to the instruction mnemonic. For example, the BNE instruction
does not execute the subsequent instruction (does not have a delay slot), whereas BNED executes
the next instruction before control is transferred to the branch location.

A delay slot must not contain the following instructions: IMM, branch, or break. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Instructions that could cause recoverable exceptions (e.g. unaligned word or halfword load and
store) are allowed in the delay slot. If an exception is caused in a delay slot the ESR[DS] bit is set,
and the exception handler is responsible for returning the execution to the branch target (stored in
the special purpose register BTR). If the ESR[DS] bit is set, register R17 is not valid (otherwise it
contains the address following the instruction causing the exception).

Branch Target Cache

To improve branch performance, MicroBlaze provides a Branch Target Cache (BTC) coupled with
a branch prediction scheme. With the BTC enabled, a correctly predicted immediate branch or
return instruction incurs no overhead.

The BTC operates by saving the target address of each immediate branch and return instruction the
first time the instruction is encountered. The next time it is encountered, it is usually found in the
Branch Target Cache, and the Instruction Fetch Program Counter is then simply changed to the
saved target address, in case the branch should be taken. Unconditional branches and return
instructions are always taken, whereas conditional branches use branch prediction, to avoid taking a
branch that should not have been taken and vice versa.

The BTC is cleared when a memory barrier (MBAR 0) or synchronizing branch (BRI 4) is executed.

There are three cases where the branch prediction can cause a mispredict, namely:

 A conditional branch that should not have been taken, is actually taken,

 A conditional branch that should actually have been taken, is not taken,

 The target address of a return instruction is incorrect, which may occur when returning from a
function called from different places in the code.

All of these cases are detected and corrected when the branch or return instruction reaches the
execute stage, and the branch prediction bits or target address are updated in the BTC, to reflect the
actual instruction behavior. This correction incurs a penalty of two clock cycles.

The size of the BTC can be selected with C_BRANCH_TARGET_CACHE_SIZE. The default
recommended setting uses one block RAM, and provides either 512 entries (for Virtex-5, Virtex-6,
and 7 Series) or 256 entries (for all other families). When selecting 64 entries or below, distributed
RAM is used to implement the BTC, otherwise block RAM is used.

When the BTC uses block RAM, and C_FAULT_TOLERANT is set to 1, block RAMs are protected
by parity. In case of a parity error, the branch is not predicted. To avoid accumulating errors in this
case, the BTC should be cleared periodically by a synchronizing branch.

The Branch Target Cache is available when C_USE_BRANCH_TARGET_CACHE is set to 1 and
C_AREA_OPTIMIZED is set to 0.
MicroBlaze Processor Reference Guide www.xilinx.com 51
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Memory Architecture
MicroBlaze is implemented with a Harvard memory architecture; instruction and data accesses are
done in separate address spaces. Each address space has a 32-bit range (that is, handles up to 4-GB
of instructions and data memory respectively). The instruction and data memory ranges can be made
to overlap by mapping them both to the same physical memory. The latter is useful for software
debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide and use big endian or
little endian, bit-reversed format, depending on the parameter C_ENDIANNESS. MicroBlaze
supports word, halfword, and byte accesses to data memory.

Data accesses must be aligned (word accesses must be on word boundaries, halfword on halfword
boundaries), unless the processor is configured to support unaligned exceptions. All instruction
accesses must be word aligned.

MicroBlaze prefetches instructions to improve performance, using the instruction prefetch buffer
and (if enabled) instruction cache streams. To avoid attempts to prefetch instructions beyond the end
of physical memory, which may cause an instruction bus error or a processor stall, instructions must
not be located too close to the end of physical memory. The instruction prefetch buffer requires 16
bytes margin, and using instruction cache streams adds two additional cache lines (32 or 64 bytes).

MicroBlaze does not separate data accesses to I/O and memory (it uses memory mapped I/O). The
processor has up to three interfaces for memory accesses:

 Local Memory Bus (LMB)

 Advanced eXtensible Interface (AXI4) or Processor Local Bus (PLB)

 Advanced eXtensible Interface (AXI4) or Xilinx CacheLink (XCL)

The LMB memory address range must not overlap with AXI4, PLB or XCL ranges.

The C_ENDIANNESS parameter is always automatically set to little endian when using AXI4, and
to big endian when using PLB.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache read hits,
except with C_AREA_OPTIMIZED set to 1, when data side accesses and data cache read hits
require two clock cycles, and with C_FAULT_TOLERANT set to 1, when byte writes and halfword
writes to LMB normally require two clock cycles.

The data cache write latency depends on C_DCACHE_USE_WRITEBACK. When
C_DCACHE_USE_WRITEBACK is set to 1, the write latency normally is one cycle (more if the
cache needs to do memory accesses). When C_DCACHE_USE_WRITEBACK is cleared to 0, the
write latency normally is two cycles (more if the posted-write buffer in the memory controller is
full).

The MicroBlaze instruction and data caches can be configured to use 4 or 8 word cache lines. When
using a longer cache line, more bytes are prefetched, which generally improves performance for
software with sequential access patterns. However, for software with a more random access pattern
the performance can instead decrease for a given cache size. This is caused by a reduced cache hit
rate due to fewer available cache lines.

For details on the different memory interfaces refer to Chapter 3, “MicroBlaze Signal Interface
Description”.
52 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Privileged Instructions
Privileged Instructions
The following MicroBlaze instructions are privileged:

 GET, GETD,PUT,PUTD (except when explicitly allowed)

 WIC, WDC

 MTS

 MSRCLR, MSRSET (except when only the C bit is affected)

 BRK

 RTID, RTBD, RTED

 BRKI (except when jumping to physical address 0x8 or 0x18)

Attempted use of these instructions when running in user mode causes a privileged instruction
exception.

When setting the parameter C_MMU_PRIVILEGED_INSTR to 1, the instructions GET, GETD,
PUT, and PUTD are not considered privileged, and can be executed when running in user mode. It
is strongly discouraged to do this, unless absolutely necessary for performance reasons, since it
allows application programs to interfere with each other.

There are six ways to leave user mode and virtual mode:

1. Hardware generated reset (including debug reset)

2. Hardware exception

3. Non-maskable break or hardware break

4. Interrupt

5. Executing the instruction "BRALID Re, 0x8” to perform a user vector exception

6. Executing the software break instructions “BRKI” jumping to physical address 0x8 or 0x18

In all of these cases, except hardware generated reset, the user mode and virtual mode status is saved
in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines (privileged mode
programs) using the BRALID or BRKI instruction, jumping to physical address 0x8. Executing this
instruction causes a system-call exception to occur. The exception handler determines which
system-service routine to call and whether the calling application has permission to call that service.
If permission is granted, the exception handler performs the actual procedure call to the system-
service routine on behalf of the application program.

The execution environment expected by the system-service routine requires the execution of
prologue instructions to set up that environment. Those instructions usually create the block of
storage that holds procedural information (the activation record), update and initialize pointers, and
save volatile registers (registers the system-service routine uses). Prologue code can be inserted by
the linker when creating an executable module, or it can be included as stub code in either the
system-call interrupt handler or the system-library routines.

Returns from the system-service routine reverse the process described above. Epilog code is
executed to unwind and deallocate the activation record, restore pointers, and restore volatile
registers. The interrupt handler executes a return from exception instruction (RTED) to return to the
application.
MicroBlaze Processor Reference Guide www.xilinx.com 53
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Virtual-Memory Management
Programs running on MicroBlaze use effective addresses to access a flat 4 GB address space. The
processor can interpret this address space in one of two ways, depending on the translation mode:

 In real mode, effective addresses are used to directly access physical memory

 In virtual mode, effective addresses are translated into physical addresses by the virtual-
memory management hardware in the processor

Virtual mode provides system software with the ability to relocate programs and data anywhere in
the physical address space. System software can move inactive programs and data out of physical
memory when space is required by active programs and data.

Relocation can make it appear to a program that more memory exists than is actually implemented
by the system. This frees the programmer from working within the limits imposed by the amount of
physical memory present in a system. Programmers do not need to know which physical-memory
addresses are assigned to other software processes and hardware devices. The addresses visible to
programs are translated into the appropriate physical addresses by the processor.

Virtual mode provides greater control over memory protection. Blocks of memory as small as 1 KB
can be individually protected from unauthorized access. Protection and relocation enable system
software to support multitasking. This capability gives the appearance of simultaneous or near-
simultaneous execution of multiple programs.

In MicroBlaze, virtual mode is implemented by the memory-management unit (MMU), available
when C_USE_MMU is set to 3 (Virtual) and C_AREA_OPTIMIZED is set to 0. The MMU controls
effective-address to physical-address mapping and supports memory protection. Using these
capabilities, system software can implement demand-paged virtual memory and other memory
management schemes.

The MicroBlaze MMU implementation is based upon PowerPC™ 405. For details, see the
PowerPC Processor Reference Guide (UG011) document.

The MMU features are summarized as follows:

 Translates effective addresses into physical addresses

 Controls page-level access during address translation

 Provides additional virtual-mode protection control through the use of zones

 Provides independent control over instruction-address and data-address translation and
protection

 Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16 MB. Any
combination of page sizes can be used by system software

 Software controls the page-replacement strategy

Real Mode
The processor references memory when it fetches an instruction and when it accesses data with a
load or store instruction. Programs reference memory locations using a 32-bit effective address
calculated by the processor. When real mode is enabled, the physical address is identical to the
effective address and the processor uses it to access physical memory. After a processor reset, the
processor operates in real mode. Real mode can also be enabled by clearing the VM bit in the MSR.

Physical-memory data accesses (loads and stores) are performed in real mode using the effective
address. Real mode does not provide system software with virtual address translation, but the full
memory access-protection is available, implemented when C_USE_MMU > 1 (User Mode) and
C_AREA_OPTIMIZED = 0. Implementation of a real-mode memory manager is more
54 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf

Virtual-Memory Management
straightforward than a virtual-mode memory manager. Real mode is often an appropriate solution
for memory management in simple embedded environments, when access-protection is necessary,
but virtual address translation is not required.

Virtual Mode
In virtual mode, the processor translates an effective address into a physical address using the
process shown in Figure 2-18. Virtual mode can be enabled by setting the VM bit in the MSR..

Each address shown in Figure 2-18 contains a page-number field and an offset field. The page
number represents the portion of the address translated by the MMU. The offset represents the byte
offset into a page and is not translated by the MMU. The virtual address consists of an additional
field, called the process ID (PID), which is taken from the PID register (see Process-ID Register,
page 36). The combination of PID and effective page number (EPN) is referred to as the virtual page
number (VPN). The value n is determined by the page size, as shown in Table 2-36.

System software maintains a page-translation table that contains entries used to translate each
virtual page into a physical page. The page size defined by a page translation entry determines the
size of the page number and offset fields. For example, when a 4 kB page size is used, the page-
number field is 20 bits and the offset field is 12 bits. The VPN in this case is 28 bits.

Then the most frequently used page translations are stored in the translation look-aside buffer
(TLB). When translating a virtual address, the MMU examines the page-translation entries for a
matching VPN (PID and EPN). Rather than examining all entries in the table, only entries contained
in the processor TLB are examined. When a page-translation entry is found with a matching VPN,
the corresponding physical-page number is read from the entry and combined with the offset to form
the 32-bit physical address. This physical address is used by the processor to reference memory.

Figure 2-18: Virtual-Mode Address Translation

UG011_37_021302

32-Bit Effective Address
0

Effective Page Number Offset

n 31

0

PID

24 31

Translation Look-Aside
Buffer (TLB) Look-Up

0

Effective Page Number Offset

n+8 39

PID

8

40-Bit Virtual Address

0

Real Page Number Offset

n 31

32-Bit Physical Address

Process ID Register
MicroBlaze Processor Reference Guide www.xilinx.com 55
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
System software can use the PID to uniquely identify software processes (tasks, subroutines,
threads) running on the processor. Independently compiled processes can operate in effective-
address regions that overlap each other. This overlap must be resolved by system software if
multitasking is supported. Assigning a PID to each process enables system software to resolve the
overlap by relocating each process into a unique region of virtual-address space. The virtual-address
space mappings enable independent translation of each process into the physical-address space.

Page-Translation Table

The page-translation table is a software-defined and software-managed data structure containing
page translations. The requirement for software-managed page translation represents an
architectural trade-off targeted at embedded-system applications. Embedded systems tend to have a
tightly controlled operating environment and a well-defined set of application software. That
environment enables virtual-memory management to be optimized for each embedded system in the
following ways:

 The page-translation table can be organized to maximize page-table search performance (also
called table walking) so that a given page-translation entry is located quickly. Most general-
purpose processors implement either an indexed page table (simple search method, large page-
table size) or a hashed page table (complex search method, small page-table size). With
software table walking, any hybrid organization can be employed that suits the particular
embedded system. Both the page-table size and access time can be optimized.

 Independent page sizes can be used for application modules, device drivers, system service
routines, and data. Independent page-size selection enables system software to more efficiently
use memory by reducing fragmentation (unused memory). For example, a large data structure
can be allocated to a 16 MB page and a small I/O device-driver can be allocated to a 1 KB
page.

 Page replacement can be tuned to minimize the occurrence of missing page translations. As
described in the following section, the most-frequently used page translations are stored in the
translation look-aside buffer (TLB). Software is responsible for deciding which translations are
stored in the TLB and which translations are replaced when a new translation is required. The
replacement strategy can be tuned to avoid thrashing, whereby page-translation entries are
constantly being moved in and out of the TLB. The replacement strategy can also be tuned to
prevent replacement of critical-page translations, a process sometimes referred to as page
locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and data page-
translation entries accessible by the MMU. Software is responsible for reading entries from the
page-translation table in system memory and storing them in the TLB. The following section
describes the unified TLB in more detail. Internally, the MMU also contains shadow TLBs for
instructions and data, with sizes configurable by C_MMU_ITLB_SIZE and C_MMU_DTLB_SIZE
respectively.

These shadow TLBs are managed entirely by the processor (transparent to software) and are used to
minimize access conflicts with the unified TLB.

Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is used by the MicroBlaze MMU for address translation
when the processor is running in virtual mode, memory protection, and storage control. Each entry
within the TLB contains the information necessary to identify a virtual page (PID and effective page
number), specify its translation into a physical page, determine the protection characteristics of the
page, and specify the storage attributes associated with the page.
56 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Virtual-Memory Management
The MicroBlaze TLB is physically implemented as three separate TLBs:

 Unified TLB—The UTLB contains 64 entries and is pseudo-associative. Instruction-page and
data-page translation can be stored in any UTLB entry. The initialization and management of
the UTLB is controlled completely by software.

 Instruction Shadow TLB—The ITLB contains instruction page-translation entries and is fully
associative. The page-translation entries stored in the ITLB represent the most-recently
accessed instruction-page translations from the UTLB. The ITLB is used to minimize
contention between instruction translation and UTLB-update operations. The initialization and
management of the ITLB is controlled completely by hardware and is transparent to software.

 Data Shadow TLB—The DTLB contains data page-translation entries and is fully associative.
The page-translation entries stored in the DTLB represent the most-recently accessed data-
page translations from the UTLB. The DTLB is used to minimize contention between data
translation and UTLB-update operations. The initialization and management of the DTLB is
controlled completely by hardware and is transparent to software.

Figure 2-19 provides the translation flow for TLB.

Figure 2-19: TLB Address Translation Flow

Generate I-side
Effective Address

Generate D-side
Effective Address

No Translation Perform ITLB
Look-Up

Perform DTLB
Look-Up

No Translation

Translation Disabled
(MSR[VM]=0)

Translation Enabled
(MSR[VM]=1)

Translation Enabled
(MSR[VM]=1)

Translation Disabled
(MSR[VM]=0)

Perform UTLB
Look-Up

Extract Real
Address from ITLB

Extract Real
Address from DTLB

ITLB Hit ITLB Miss DTLB Miss DTLB Hit

UTLB Hit UTLB Miss

I-Side TLB Miss

or

D-Side TLB Miss

Exception

Extract Real
Address from UTLB

Route Address

to ITLB

Route Address

to DTLB

Continue I-cache
Access

Continue I-cache
or D-cache

Access
MicroBlaze Processor Reference Guide www.xilinx.com 57
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
TLB Entry Format

Figure 2-20 shows the format of a TLB entry. Each TLB entry is 68 bits and is composed of two
portions: TLBLO (also referred to as the data entry), and TLBHI (also referred to as the tag entry).

Figure 2-20: TLB Entry Format

The TLB entry contents are described in Table 2-20, page 38 and Table 2-21, page 40.

The fields within a TLB entry are categorized as follows:

 Virtual-page identification (TAG, SIZE, V, TID)—These fields identify the page-translation
entry. They are compared with the virtual-page number during the translation process.

 Physical-page identification (RPN, SIZE)—These fields identify the translated page in
physical memory.

 Access control (EX, WR, ZSEL)—These fields specify the type of access allowed in the page
and are used to protect pages from improper accesses.

 Storage attributes (W, I, M, G, E, U0)—These fields specify the storage-control attributes, such
as caching policy for the data cache (write-back or write-through), whether a page is
cacheable, and how bytes are ordered (endianness).

Table 2-36 shows the relationship between the TLB-entry SIZE field and the translated page size.
This table also shows how the page size determines which address bits are involved in a tag
comparison, which address bits are used as a page offset, and which bits in the physical page number
are used in the physical address.

TLBLO:
0 22 23 24 28 29 30 31

RPN EX WR ZSEL W I M G

TLBHI:
0 22 25 26 27 28 35

TAG SIZE V E U0 TID

Table 2-36: Page-Translation Bit Ranges by Page Size

Page
Size

SIZE
(TLBHI
Field)

Tag Comparison
Bit Range

Page Offset
Physical

Page
Number

RPN Bits
Clear to 0

1 KB 000 TAG[0:21] - Address[0:21] Address[22:31] RPN[0:21] -

4 KB 001 TAG[0:19] - Address[0:19] Address[20:31] RPN[0:19] 20:21

16 KB 010 TAG[0:17] - Address[0:17] Address[18:31] RPN[0:17] 18:21

64 KB 011 TAG[0:15] - Address[0:15] Address[16:31] RPN[0:15] 16:21

256 KB 100 TAG[0:13] - Address[0:13] Address[14:31] RPN[0:13] 14:21

1 MB 101 TAG[0:11] - Address[0:11] Address[12:31] RPN[0:11] 12:21

4 MB 110 TAG[0:9] - Address[0:9] Address[10:31] RPN[0:9] 10:21

16 MB 111 TAG[0:7] - Address[0:7] Address[8:31] RPN[0:7] 8:21
58 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Virtual-Memory Management
TLB Access

When the MMU translates a virtual address (the combination of PID and effective address) into a
physical address, it first examines the appropriate shadow TLB for the page translation entry. If an
entry is found, it is used to access physical memory. If an entry is not found, the MMU examines the
UTLB for the entry. A delay occurs each time the UTLB must be accessed due to a shadow TLB
miss. The miss latency ranges from 2-32 cycles. The DTLB has priority over the ITLB if both
simultaneously access the UTLB.

Figure 2-21, page 60 shows the logical process the MMU follows when examining a page-
translation entry in one of the shadow TLBs or the UTLB. All valid entries in the TLB are checked.

A TLB hit occurs when all of the following conditions are met by a TLB entry:

 The entry is valid

 The TAG field in the entry matches the effective address EPN under the control of the SIZE
field in the entry

 The TID field in the entry matches the PID

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an exception,
described as follows:

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID. Only the
TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a process-independent
translation. Pages that are accessed globally by all processes should be assigned a TID value of
0x00. A PID value of 0x00 does not identify a process that can access any page. When PID=0x00,
a page-translation hit only occurs when TID=0x00. It is possible for software to load the TLB with
multiple entries that match an EA[EPN] and PID combination. However, this is considered a
programming error and results in undefined behavior.

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some or all of
the bits in this field are used, depending on the value of the SIZE field (see Table 2-36). For
example, if the SIZE field specifies a 256 kB page size, RPN[0:13] represents the physical page
number and is used to form the physical address. RPN[14:21] is not used, and software must clear
those bits to 0 when initializing the TLB entry. The remainder of the physical address is taken from
the page-offset portion of the EA. If the page size is 256 kB, the 32-bit physical address is formed by
concatenating RPN[0:13] with bits14:31 of the effective address.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control fields. These
fields indicate whether the currently executing program is allowed to perform the requested memory
access.

If access is allowed, the MMU checks the storage-attribute fields to determine how to access the
page. The storage-attribute fields specify the caching policy for memory accesses.

TLB Access Failures

A TLB-access failure causes an exception to occur. This interrupts execution of the instruction that
caused the failure and transfers control to an interrupt handler to resolve the failure. A TLB access
can fail for two reasons:

 A matching TLB entry was not found, resulting in a TLB miss

 A matching TLB entry was found, but access to the page was prevented by either the storage
attributes or zone protection

When an interrupt occurs, the processor enters real mode by clearing MSR[VM] to 0. In real mode,
all address translation and memory-protection checks performed by the MMU are disabled. After
MicroBlaze Processor Reference Guide www.xilinx.com 59
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
system software initializes the UTLB with page-translation entries, management of the MicroBlaze
UTLB is usually performed using interrupt handlers running in real mode.

Figure 2-21 diagrams the general process for examining a TLB entry.

The following sections describe the conditions under which exceptions occur due to TLB access
failures.

Data-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), a data-storage exception occurs when access to a
page is not permitted for any of the following reasons:

 From user mode:

 The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00). This
applies to load and store instructions.

 The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 11). This applies to store instructions.

Figure 2-21: General Process for Examining a TLB Entry

UG011_41_033101

Check Access

Read TLBLO[RPN]
using TLBHI[SIZE]

TLBHI[V]=1

TLBHI[TID]=0x00

Compare
TLBHI[TID] with PID

Compare
TLBHI[TAG] with EA[EPN]

using TLBHI[SIZE]

Yes

NoYes

Match

Match (TLB Hit)

Check for
Guarded Storage

Instruction FetchData Reference

Allowed

Not Guarded

Extract Offset from EA
using TLBHI[SIZE]

Generate Physical Address
from TLBLO[RPN] and Offset

TLB-Entry MissNo Match

Storage ViolationGuarded

Access ViolationNot Allowed

No TLB-Entry Miss

TLB-Entry MissNo Match
60 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Virtual-Memory Management
 From privileged mode:

 The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11). This applies to store
instructions.

Instruction-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), an instruction-storage exception occurs when access
to a page is not permitted for any of the following reasons:

 From user mode:

 The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).

 The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 11).

 The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

 From privileged mode:

 The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11).

 The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

Data TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) a data TLB-miss exception occurs if a valid, matching
TLB entry was not found in the TLB (shadow and UTLB). Any load or store instruction can cause
a data TLB-miss exception.

Instruction TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) an instruction TLB-miss exception occurs if a valid,
matching TLB entry was not found in the TLB (shadow and UTLB). Any instruction fetch can cause
an instruction TLB-miss exception.

Access Protection
System software uses access protection to protect sensitive memory locations from improper access.
System software can restrict memory accesses for both user-mode and privileged-mode software.
Restrictions can be placed on reads, writes, and instruction fetches. Access protection is available
when virtual protected mode is enabled.

Access control applies to instruction fetches, data loads, and data stores. The TLB entry for a virtual
page specifies the type of access allowed to the page. The TLB entry also specifies a zone-protection
field in the zone-protection register that is used to override the access controls specified by the TLB
entry.

TLB Access-Protection Controls

Each TLB entry controls three types of access:

 Process—Processes are protected from unauthorized access by assigning a unique process ID
(PID) to each process. When system software starts a user-mode application, it loads the PID
for that application into the PID register. As the application executes, memory addresses are
translated using only TLB entries with a TID field in Translation Look-Aside Buffer High
(TLBHI) that matches the PID. This enables system software to restrict accesses for an
application to a specific area in virtual memory.
MicroBlaze Processor Reference Guide www.xilinx.com 61
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
A TLB entry with TID=0x00 represents a process-independent translation. Pages that are
accessed globally by all processes should be assigned a TID value of 0x00.

 Execution—The processor executes instructions only if they are fetched from a virtual page
marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to 0 prevents execution of
instructions fetched from a page, instead causing an instruction-storage interrupt (ISI) to occur.
The ISI does not occur when the instruction is fetched, but instead occurs when the instruction
is executed. This prevents speculatively fetched instructions that are later discarded (rather
than executed) from causing an ISI.

The zone-protection register can override execution protection.

 Read/Write—Data is written only to virtual pages marked as writable (TLBLO[WR]=1).
Clearing TLBLO[WR] to 0 marks a page as read-only. An attempt to write to a read-only page
causes a data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone
protection is used to read-protect pages. This is done by defining a no-access-allowed zone
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs running in
user mode can be prevented from reading a page. Privileged programs always have read access to a
page.

Zone Protection

Zone protection is used to override the access protection specified in a TLB entry. Zones are an
arbitrary grouping of virtual pages with common access protection. Zones can contain any number
of pages specifying any combination of page sizes. There is no requirement for a zone to contain
adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection override
applied to each of 16 possible zones. The protection override for a zone is encoded in the ZPR as a
2-bit field. The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects one of the 16 zone
fields from the ZPR (Z0–Z15). For example, zone Z5 is selected when ZSEL = 0101.

Changing a zone field in the ZPR applies a protection override across all pages in that zone. Without
the ZPR, protection changes require individual alterations to each page translation entry within the
zone.

UTLB Management
The UTLB serves as the interface between the processor MMU and memory-management software.
System software manages the UTLB to tell the MMU how to translate virtual addresses into
physical addresses. When a problem occurs due to a missing translation or an access violation, the
MMU communicates the problem to system software using the exception mechanism. System
software is responsible for providing interrupt handlers to correct these problems so that the MMU
can proceed with memory translation.

Software reads and writes UTLB entries using the MFS and MTS instructions, respectively. These
instructions use the TLBX register index (numbered 0 to 63) corresponding to one of the 64 entries
in the UTLB. The tag and data portions are read and written separately, so software must execute
two MFS or MTS instructions to completely access an entry. The UTLB is searched for a specific
translation using the TLBSX register. TLBSX locates a translation using an effective address and
loads the corresponding UTLB index into the TLBX register.

Individual UTLB entries are invalidated using the MTS instruction to clear the valid bit in the tag
portion of a TLB entry (TLBHI[V]).
62 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Virtual-Memory Management
When C_FAULT_TOLERANT is set to 1, the UTLB block RAM is protected by parity. In case of a
parity error, a TLB miss exception occurs. To avoid accumulating errors in this case, each entry in
the UTLB should be periodically invalidated.

Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

 In a virtual-memory environment, software and data often consume more memory than is
physically available. Some of the software and data pages must be stored outside physical
memory, such as on a hard drive, when they are not used. Ideally, the most-frequently used
pages stay in physical memory and infrequently used pages are stored elsewhere.

 When pages in physical-memory are replaced to make room for new pages, it is important to
know whether the replaced (old) pages were modified. If they were modified, they must be
saved prior to loading the replacement (new) pages. If the old pages were not modified, the
new pages can be loaded without saving the old pages.

 A limited number of page translations are kept in the UTLB. The remaining translations must
be stored in the page-translation table. When a translation is not found in the UTLB (due to a
miss), system software must decide which UTLB entry to discard so that the missing
translation can be loaded. It is desirable for system software to replace infrequently used
translations rather than frequently used translations.

Solving the above problems in an efficient manner requires keeping track of page accesses and page
modifications. MicroBlaze does not track page access and page modification in hardware. Instead,
system software can use the TLB-miss exceptions and the data-storage exception to collect this
information. As the information is collected, it can be stored in a data structure associated with the
page-translation table.

Page-access information is used to determine which pages should be kept in physical memory and
which are replaced when physical-memory space is required. System software can use the valid bit
in the TLB entry (TLBHI[V]) to monitor page accesses. This requires page translations be
initialized as not valid (TLBHI[V]=0) to indicate they have not been accessed. The first attempt to
access a page causes a TLB-miss exception, either because the UTLB entry is marked not valid or
because the page translation is not present in the UTLB. The TLB-miss handler updates the UTLB
with a valid translation (TLBHI[V]=1). The set valid bit serves as a record that the page and its
translation have been accessed. The TLB-miss handler can also record the information in a separate
data structure associated with the page-translation entry.

Page-modification information is used to indicate whether an old page can be overwritten with a
new page or the old page must first be stored to a hard disk. System software can use the write-
protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. This requires page
translations be initialized as read-only (TLBLO[WR]=0) to indicate they have not been modified.
The first attempt to write data into a page causes a data-storage exception, assuming the page has
already been accessed and marked valid as described above. If software has permission to write into
the page, the data-storage handler marks the page as writable (TLBLO[WR]=1) and returns. The set
write-protection bit serves as a record that a page has been modified. The data-storage handler can
also record this information in a separate data structure associated with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new process is
started.
MicroBlaze Processor Reference Guide www.xilinx.com 63
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Reset, Interrupts, Exceptions, and Break
MicroBlaze supports reset, interrupt, user exception, break, and hardware exceptions. The following
section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:

1. Reset

2. Hardware Exception

3. Non-maskable Break

4. Break

5. Interrupt

6. User Vector (Exception)

Table 2-37 defines the memory address locations of the associated vectors and the hardware
enforced register file locations for return addresses. Each vector allocates two addresses to allow full
address range branching (requires an IMM followed by a BRAI instruction). The address range 0x28
to 0x4F is reserved for future software support by Xilinx. Allocating these addresses for user
applications is likely to conflict with future releases of EDK support software.

All of these events will clear the reservation bit, used together with the LWX and SWX instructions
to implement mutual exclusion, such as semaphores and spinlocks.

Reset
When a Reset, MB_Reset or Debug_Rst (1) occurs, MicroBlaze flushes the pipeline and starts
fetching instructions from the reset vector (address 0x0). Both external reset signals are active high
and should be asserted for a minimum of 16 cycles.

Equivalent Pseudocode

PC 0x00000000
MSR C_RESET_MSR (see “MicroBlaze Core Configurability” in Chapter 3)
EAR 0; ESR 0; FSR 0
PID 0; ZPR 0; TLBX 0
Reservation 0

Table 2-37: Vectors and Return Address Register File Location

Event Vector Address
Register File

Return Address

Reset 0x00000000 - 0x00000004 -

User Vector (Exception) 0x00000008 - 0x0000000C Rx

Interrupt 0x00000010 - 0x00000014 R14

Break: Non-maskable hardware

0x00000018 - 0x0000001C R16Break: Hardware

Break: Software

Hardware Exception 0x00000020 - 0x00000024 R17 or BTR

Reserved by Xilinx for future use 0x00000028 - 0x0000004F -

1. Reset input controlled by the XMD debugger via MDM.
64 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Reset, Interrupts, Exceptions, and Break
Hardware Exceptions
MicroBlaze can be configured to trap the following internal error conditions: illegal instruction,
instruction and data bus error, and unaligned access. The divide exception can only be enabled if the
processor is configured with a hardware divider (C_USE_DIV=1). When configured with a
hardware floating point unit (C_USE_FPU>0), it can also trap the following floating point specific
exceptions: underflow, overflow, float division-by-zero, invalid operation, and denormalized
operand error.

When configured with a hardware Memory Management Unit, it can also trap the following
memory management specific exceptions: Illegal Instruction Exception, Data Storage Exception,
Instruction Storage Exception, Data TLB Miss Exception, and Instruction TLB Miss Exception.

A hardware exception causes MicroBlaze to flush the pipeline and branch to the hardware exception
vector (address 0x20). The execution stage instruction in the exception cycle is not executed.

The exception also updates the general purpose register R17 in the following manner:

 For the MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB
Miss Exception, Instruction TLB Miss Exception) the register R17 is loaded with the
appropriate program counter value to re-execute the instruction causing the exception upon
return. The value is adjusted to return to a preceding IMM instruction, if any. If the exception is
caused by an instruction in a branch delay slot, the value is adjusted to return to the branch
instruction, including adjustment for a preceding IMM instruction, if any.

 For all other exceptions the register R17 is loaded with the program counter value of the
subsequent instruction, unless the exception is caused by an instruction in a branch delay slot.
If the exception is caused by an instruction in a branch delay slot, the ESR[DS] bit is set. In
this case the exception handler should resume execution from the branch target address stored
in BTR.

The EE and EIP bits in MSR are automatically reverted when executing the RTED instruction.

The VM and UM bits in MSR are automatically reverted from VMS and UMS when executing the
RTED, RTBD, and RTID instructions.

Exception Priority

When two or more exceptions occur simultaneously, they are handled in the following order, from
the highest priority to the lowest:

 Instruction Bus Exception

 Instruction TLB Miss Exception

 Instruction Storage Exception

 Illegal Opcode Exception

 Privileged Instruction Exception or Stack Protection Violation Exception

 Data TLB Miss Exception

 Data Storage Exception

 Unaligned Exception

 Data Bus Exception

 Divide Exception

 FPU Exception

 Stream Exception
MicroBlaze Processor Reference Guide www.xilinx.com 65
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Exception Causes

 Stream Exception

The stream exception (FSL or AXI) is caused by executing a get or getd instruction with the
‘e’ bit set to ‘1’ when there is a control bit mismatch.

 Instruction Bus Exception

The instruction bus exception is caused by errors when reading data from memory.

 The instruction peripheral AXI4 interface (M_AXI_IP) exception is caused by an error
response on M_AXI_IP_RRESP.

 The instruction cache AXI4 interface (M_AXI_IC) is caused by an error response on
M_AXI_IC_RRESP. The exception can only occur when C_ICACHE_ALWAYS_USED is
set to 1 and the cache is turned off. In all other cases the response is ignored.

 The instruction Processor Local Bus (PLB) exception is caused by an active error signal
from the slave (IPLB_MRdErr) or timeout signal from the arbiter (IPLB_MTimeout).

 The instructions side local memory (ILMB) can only cause instruction bus exception
when C_FAULT_TOLERANT is set to 1, and either an uncorrectable error occurs in the
LMB memory, as indicated by the IUE signal, or C_ECC_USE_CE_EXCEPTION is set
to 1 and a correctable error occurs in the LMB memory, as indicated by the ICE signal.

 The CacheLink (IXCL) interfaces cannot cause instruction bus exceptions.

 Illegal Opcode Exception

The illegal opcode exception is caused by an instruction with an invalid major opcode (bits 0
through 5 of instruction). Bits 6 through 31 of the instruction are not checked. Optional
processor instructions are detected as illegal if not enabled. If the optional feature
C_OPCODE_0x0_ILLEGAL is enabled, an illegal opcode exception is also caused if the
instruction is equal to 0x00000000.

 Data Bus Exception

The data bus exception is caused by errors when reading data from memory or writing data to
memory.

 The data peripheral AXI4 interface (M_AXI_DP) exception is caused by an error
response on M_AXI_DP_RRESP or M_AXI_DP_BRESP.

 The data cache AXI4 interface (M_AXI_DC) exception is caused by:

- An error response on M_AXI_DC_RRESP or M_AXI_DP_BRESP,

- OKAY response on M_AXI_DC_RRESP in case of an exclusive access using LWX.

The exception can only occur when C_DCACHE_ALWAYS_USED is set to 1 and the cache
is turned off, or when an exclusive access using LWX or SWX is performed. In all other cases
the response is ignored.

 The data Processor Local Bus exception is caused by an active error signal from the slave
(DPLB_MRdErr or DPLB_MWrErr) or timeout signal from the arbiter
(DPLB_MTimeout).

 The data side local memory (DLMB) can only cause instruction bus exception when
C_FAULT_TOLERANT is set to 1, and either an uncorrectable error occurs in the LMB
memory, as indicated by the DUE signal, or C_ECC_USE_CE_EXCEPTION is set to 1
and a correctable error occurs in the LMB memory, as indicated by the DCE signal. An
error can occur for all read accesses, and for byte and halfword write accesses.

 The CacheLink (DXCL) interfaces cannot cause data bus exceptions.
66 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Reset, Interrupts, Exceptions, and Break
 Unaligned Exception

The unaligned exception is caused by a word access where the address to the data bus has bits
30 or 31 set, or a half-word access with bit 31 set.

 Divide Exception

The divide exception is caused by an integer division (idiv or idivu) where the divisor is zero,
or by a signed integer division (idiv) where overflow occurs (-2147483648 / -1).

 FPU Exception

An FPU exception is caused by an underflow, overflow, divide-by-zero, illegal operation, or
denormalized operand occurring with a floating point instruction.

 Underflow occurs when the result is denormalized.

 Overflow occurs when the result is not-a-number (NaN).

 The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero when rB
is not infinite.

 Illegal operation is caused by a signaling NaN operand or by illegal infinite or zero
operand combinations.

 Privileged Instruction Exception

The Privileged Instruction exception is caused by an attempt to execute a privileged instruction
in User Mode.

 Stack Protection Violation Exception

A Stack Protection Violation exception is caused by executing a load or store instruction using
the stack pointer (register R1) as rA with an address outside the stack boundaries defined by the
special Stack Low and Stack High registers, causing a stack overflow or a stack underflow.

 Data Storage Exception

The Data Storage exception is caused by an attempt to access data in memory that results in a
memory-protection violation.

 Instruction Storage Exception

The Instruction Storage exception is caused by an attempt to access instructions in memory that
results in a memory-protection violation.

 Data TLB Miss Exception

The Data TLB Miss exception is caused by an attempt to access data in memory, when a valid
Translation Look-Aside Buffer entry is not present, and virtual protected mode is enabled.

 Instruction TLB Miss Exception

The Instruction TLB Miss exception is caused by an attempt to access instructions in memory,
when a valid Translation Look-Aside Buffer entry is not present, and virtual protected mode is
enabled.

Should an Instruction Bus Exception, Illegal Opcode Exception or Data Bus Exception occur when
C_FAULT_TOLERANT is set to 1, and an exception is in progress (i.e. MSR[EIP] set and MSR[EE]
cleared), the pipeline is halted, and the external signal MB_Error is set.
MicroBlaze Processor Reference Guide www.xilinx.com 67
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Equivalent Pseudocode

ESR[DS] exception in delay slot
if ESR[DS] then

BTR branch target PC
if MMU exception then

if branch preceded by IMM then
r17 PC - 8

else
r17 PC - 4

else
r17 invalid value

else if MMU exception then
if instruction preceded by IMM then

r17 PC - 4
else

r17 PC
else

r17 PC + 4
PC 0x00000020
MSR[EE] 0, MSR[EIP] 1
MSR[UMS] MSR[UM], MSR[UM] 0, MSR[VMS] MSR[VM], MSR[VM] 0
ESR[EC] exception specific value
ESR[ESS] exception specific value
EAR exception specific value
FSR exception specific value
Reservation 0

Breaks
There are two kinds of breaks:

 Hardware (external) breaks

 Software (internal) breaks

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (that is, the Ext_BRK and
Ext_NM_BRK input ports). On a break, the instruction in the execution stage completes while the
instruction in the decode stage is replaced by a branch to the break vector (address 0x18). The break
return address (the PC associated with the instruction in the decode stage at the time of the break) is
automatically loaded into general purpose register R16. MicroBlaze also sets the Break In Progress
(BIP) flag in the Machine Status Register (MSR).

A normal hardware break (that is, the Ext_BRK input port) is only handled when MSR[BIP] and
MSR[EIP] are set to 0 (that is, there is no break or exception in progress). The Break In Progress flag
disables interrupts. A non-maskable break (that is, the Ext_NM_BRK input port) is always handled
immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD instruction.

The Ext_BRK signal must be kept asserted until the break has occurred, and deasserted before the
RTBD instruction is executed. The Ext_NM_BRK signal must only be asserted one clock cycle.

Software Breaks

To perform a software break, use the brk and brki instructions. Refer to Chapter 5, “MicroBlaze
Instruction Set Architecture” for detailed information on software breaks.
68 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Reset, Interrupts, Exceptions, and Break
Latency

The time it takes MicroBlaze to enter a break service routine from the time the break occurs depends
on the instruction currently in the execution stage and the latency to the memory storing the break
vector.

Equivalent Pseudocode
r16 PC
PC 0x00000018
MSR[BIP] 1
MSR[UMS] MSR[UM], MSR[UM] 0, MSR[VMS] MSR[VM], MSR[VM] 0
Reservation 0

Interrupt
MicroBlaze supports one external interrupt source (connected to the Interrupt input port). The
processor only reacts to interrupts if the Interrupt Enable (IE) bit in the Machine Status Register
(MSR) is set to 1. On an interrupt, the instruction in the execution stage completes while the
instruction in the decode stage is replaced by a branch to the interrupt vector (address 0x10). The
interrupt return address (the PC associated with the instruction in the decode stage at the time of the
interrupt) is automatically loaded into general purpose register R14. In addition, the processor also
disables future interrupts by clearing the IE bit in the MSR. The IE bit is automatically set again
when executing the RTID instruction.

Interrupts are ignored by the processor if either of the break in progress (BIP) or exception in
progress (EIP) bits in the MSR are set to 1.

By using the parameter C_INTERRUPT_IS_EDGE, the external interrupt can either be set to level-
sensitive or edge-sensitive:

 When using level-sensitive interrupts, the Interrupt input must remain set until MicroBlaze
has taken the interrupt, and jumped to the interrupt vector. Software must clear the interrupt
before returning from the interrupt handler. If not, the interrupt is taken again, as soon as
interrupts are enabled when returning from the interrupt handler.

 When using edge-sensitive interrupts, MicroBlaze detects and latches the Interrupt input
edge, which means that the input only needs to be asserted one clock cycle. The interrupt input
can remain asserted, but must be deasserted at least one clock cycle before a new interrupt can
be detected. The latching of an edge sensitive interrupt is independent of the IE bit in MSR.
Should an interrupt occur while the IE bit is 0, it will immediately be serviced when the IE bit
is set to 1.

Latency

The time it takes MicroBlaze to enter an Interrupt Service Routine (ISR) from the time an interrupt
occurs, depends on the configuration of the processor and the latency of the memory controller
storing the interrupt vectors. If MicroBlaze is configured to have a hardware divider, the largest
latency happens when an interrupt occurs during the execution of a division instruction.

Equivalent Pseudocode
r14 PC
PC 0x00000010
MSR[IE] 0
MSR[UMS] MSR[UM], MSR[UM] 0, MSR[VMS] MSR[VM], MSR[VM] 0
Reservation 0
MicroBlaze Processor Reference Guide www.xilinx.com 69
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
User Vector (Exception)
The user exception vector is located at address 0x8. A user exception is caused by inserting a
‘BRALID Rx,0x8’ instruction in the software flow. Although Rx could be any general purpose
register, Xilinx recommends using R15 for storing the user exception return address, and to use the
RTSD instruction to return from the user exception handler.

Pseudocode
rx PC
PC 0x00000008
MSR[UMS] MSR[UM], MSR[UM] 0, MSR[VMS] MSR[VM], MSR[VM] 0
Reservation 0
70 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instruction Cache
Instruction Cache

Overview
MicroBlaze can be used with an optional instruction cache for improved performance when
executing code that resides outside the LMB address range.

The instruction cache has the following features:

 Direct mapped (1-way associative)

 User selectable cacheable memory address range

 Configurable cache and tag size

 Caching over AXI4 interface (M_AXI_IC) or CacheLink (XCL) interface

 Option to use 4 or 8 word cache-line

 Cache on and off controlled using a bit in the MSR

 Optional WIC instruction to invalidate instruction cache lines

 Optional stream buffers to improve performance by speculatively prefetching instructions

 Optional victim cache to improve performance by saving evicted cache lines

 Optional parity protection that invalidates cache lines if a Block RAM bit error is detected

 Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Instruction Cache Functionality
When the instruction cache is used, the memory address space is split into two segments: a
cacheable segment and a non-cacheable segment. The cacheable segment is determined by two
parameters: C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR. All addresses within this
range correspond to the cacheable address segment. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified by
C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of C_ICACHE_BASEADDR must be
zero.

The cacheable instruction address consists of two parts: the cache address, and the tag address. The
MicroBlaze instruction cache can be configured from 64 bytes to 64 kB. This corresponds to a cache
address of between 6 and 16 bits. The tag address together with the cache address should match the
full address of cacheable memory. When selecting cache sizes below 2 kB, distributed RAM is used
to implement the Tag RAM and Instruction RAM. Distributed RAM is always used to implement
the Tag RAM, when setting the parameter C_ICACHE_FORCE_TAG_LUTRAM to 1. This
parameter is only available with cache sizes 8 kB or 16 kB and less, for 4 or 8 word cache-lines,
respectively.

For example: in a MicroBlaze configured with C_ICACHE_BASEADDR= 0x00300000,
C_ICACHE_HIGHADDR=0x0030ffff, C_CACHE_BYTE_SIZE=4096,
C_ICACHE_LINE_LEN=8, and C_ICACHE_FORCE_TAG_LUTRAM=0; the cacheable memory
of 64 kB uses 16 bits of byte address, and the 4 kB cache uses 12 bits of byte address, thus the
required address tag width is: 16-12=4 bits. The total number of block RAM primitives required in
this configuration is: 2 RAMB16 for storing the 1024 instruction words, and 1 RAMB16 for 128
cache line entries, each consisting of: 4 bits of tag, 8 word-valid bits, 1 line-valid bit. In total 3
RAMB16 primitives.

Figure 2-22, page 72 shows the organization of Instruction Cache.
MicroBlaze Processor Reference Guide www.xilinx.com 71
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture

Instruction Cache Operation
For every instruction fetched, the instruction cache detects if the instruction address belongs to the
cacheable segment. If the address is non-cacheable, the cache controller ignores the instruction and
lets the M_AXI_IP, PLB or LMB complete the request. If the address is cacheable, a lookup is
performed on the tag memory to check if the requested address is currently cached. The lookup is
successful if: the word and line valid bits are set, and the tag address matches the instruction address
tag segment. On a cache miss, the cache controller requests the new instruction over the instruction
AXI4 interface (M_AXI_IC) or instruction CacheLink (IXCL) interface, and waits for the memory
controller to return the associated cache line.

With the AXI4 interface, C_ICACHE_DATA_WIDTH determines the bus data width, either 32 bits,
an entire cache line (128 bits or 256 bits), or 512 bits.

When C_FAULT_TOLERANT is set to 1, a cache miss also occurs if a parity error is detected in a
tag or instruction Block RAM.

Stream Buffers

When stream buffers are enabled, by setting the parameter C_ICACHE_STREAMS to 1, the cache
will speculatively fetch cache lines in advance in sequence following the last requested address,
until the stream buffer is full. The stream buffer can hold up to two cache lines. Should the processor
subsequently request instructions from a cache line prefetched by the stream buffer, which occurs in
linear code, they are immediately available.

The stream buffer often improves performance, since the processor generally has to spend less time
waiting for instructions to be fetched from memory.

With the AXI4 interface, C_ICACHE_DATA_WIDTH determines the amount of data transferred
from the stream buffer each clock cycle, either 32 bits or an entire cache line.

To be able to use instruction cache stream buffers, area optimization must not be enabled.

Figure 2-22: Instruction Cache Organization

Instruction Address Bits
0 30 31

Cache AddressTag Address --

Tag

Instruction
 RAM

RAM
Line Addr

Word Addr

=
Tag

Valid (word and line)

Cache_Hit

Cache_instruction_data
72 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Data Cache
Victim Cache

The victim cache is enabled by setting the parameter C_ICACHE_VICTIMS to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a cache line is
evicted from the cache, it is saved in the victim cache. By saving the most recent lines they can be
fetched much faster, should the processor request them, thereby improving performance. If the
victim cache is not used, all evicted cache lines must be read from memory again when they are
needed.

With the AXI4 interface, C_ICACHE_DATA_WIDTH determines the amount of data transferred
from/to the victim cache each clock cycle, either 32 bits or an entire cache line.

Note that to be able to use the victim cache, area optimization must not be enabled.

Instruction Cache Software Support

MSR Bit

The ICE bit in the MSR provides software control to enable and disable caches.

The contents of the cache are preserved by default when the cache is disabled. You can invalidate
cache lines using the WIC instruction or using the hardware debug logic of MicroBlaze.

WIC Instruction

The optional WIC instruction (C_ALLOW_ICACHE_WR=1) is used to invalidate cache lines in the
instruction cache from an application. For a detailed description, refer to Chapter 5, “MicroBlaze
Instruction Set Architecture”.

The WIC instruction can also be used together with parity protection to periodically invalidate
entries the cache, to avoid accumulating errors.

Data Cache

Overview
MicroBlaze can be used with an optional data cache for improved performance. The cached memory
range must not include addresses in the LMB address range. The data cache has the following
features:

 Direct mapped (1-way associative)

 Write-through or Write-back

 User selectable cacheable memory address range

 Configurable cache size and tag size

 Caching over AXI4 interface (M_AXI_DC) or CacheLink (XCL) interface

 Option to use 4 or 8 word cache-lines

 Cache on and off controlled using a bit in the MSR

 Optional WDC instruction to invalidate or flush data cache lines

 Optional victim cache with write-back to improve performance by saving evicted cache lines

 Optional parity protection for write-through cache that invalidates cache lines if a Block RAM
bit error is detected

 Optional data width selection to either use 32 bits, an entire cache line, or 512 bits
MicroBlaze Processor Reference Guide www.xilinx.com 73
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
General Data Cache Functionality
When the data cache is used, the memory address space is split into two segments: a cacheable
segment and a non-cacheable segment. The cacheable area is determined by two parameters:
C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR. All addresses within this range correspond
to the cacheable address space. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified by
C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of C_DCACHE_BASEADDR must be
zero.

Figure 2-23 shows the Data Cache Organization.

The cacheable data address consists of two parts: the cache address, and the tag address. The
MicroBlaze data cache can be configured from 64 bytes to 64 kB. This corresponds to a cache
address of between 6 and 16 bits. The tag address together with the cache address should match the
full address of cacheable memory. When selecting cache sizes below 2 kB, distributed RAM is used
to implement the Tag RAM and Data RAM, except that block RAM is always used for the Data
RAM when C_AREA_OPTIMIZED is set and C_DCACHE_USE_WRITEBACK is not set.
Distributed RAM is always used to implement the Tag RAM, when setting the parameter
C_DCACHE_FORCE_TAG_LUTRAM to 1. This parameter is only available with cache sizes 8 kB
or 16 kB and less, for 4 or 8 word cache-lines, respectively.

For example, in a MicroBlaze configured with C_DCACHE_BASEADDR=0x00400000,
C_DCACHE_HIGHADDR=0x00403fff, C_DCACHE_BYTE_SIZE=2048,
C_DCACHE_LINE_LEN=4, and C_DCACHE_FORCE_TAG_LUTRAM=0; the cacheable memory
of 16 kB uses 14 bits of byte address, and the 2 kB cache uses 11 bits of byte address, thus the
required address tag width is 14-11=3 bits. The total number of block RAM primitives required in
this configuration is 1 RAMB16 for storing the 512 data words, and 1 RAMB16 for 128 cache line
entries, each consisting of 3 bits of tag, 4 word-valid bits, 1 line-valid bit. In total, 2 RAMB16
primitives.

Figure 2-23: Data Cache Organization

Data Address Bits
0 30 31

Cache Word AddressTag Address --

Tag

Data
 RAM

RAM
Addr

Addr

=
Tag

Valid
Cache_Hit

Cache_data

Load_Instruction
74 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Data Cache
Data Cache Operation
The caching policy used by the MicroBlaze data cache, write-back or write-through, is determined
by the parameter C_DCACHE_USE_WRITEBACK. When this parameter is set, a write-back
protocol is implemented, otherwise write-through is implemented. However, when configured with
an MMU (C_USE_MMU > 1, C_AREA_OPTIMIZED = 0, C_DCACHE_USE_WRITEBACK = 1),
the caching policy in virtual mode is determined by the W storage attribute in the TLB entry,
whereas write-back is used in real mode.

With the write-back protocol, a store to an address within the cacheable range always updates the
cached data. If the target address word is not in the cache (that is, the access is a cache-miss), and the
location in the cache contains data that has not yet been written to memory (the cache location is
dirty), the old data is written over the data AXI4 interface (M_AXI_DC) or the data CacheLink
(DXCL) to external memory before updating the cache with the new data. If an entire cache line
needs to be written, a burst cache line write is used, otherwise single word writes are used. For byte
or halfword stores, in case of a cache miss, the address is first requested over the data AXI4 interface
or the data CacheLink, while a word store only updates the cache.

With the write-through protocol, a store to an address within the cacheable range generates an
equivalent byte, halfword, or word write over the data AXI4 interface or the data CacheLink to
external memory. The write also updates the cached data if the target address word is in the cache
(that is, the write is a cache hit). A write cache-miss does not load the associated cache line into the
cache.

Provided that the cache is enabled a load from an address within the cacheable range triggers a check
to determine if the requested data is currently cached. If it is (that is, on a cache hit) the requested
data is retrieved from the cache. If not (that is, on a cache miss) the address is requested over the data
AXI4 interface or data CacheLink, and the processor pipeline stalls until the cache line associated to
the requested address is returned from the external memory controller.

With the AXI4 interface, C_DCACHE_DATA_WIDTH determines the bus data width, either 32 bits,
an entire cache line (128 bits or 256 bits), or 512 bits.

When C_FAULT_TOLERANT is set to 1 and write-through protocol is used, a cache miss also
occurs if a parity error is detected in the tag or data Block RAM.

Victim Cache

The victim cache is enabled by setting the parameter C_DCACHE_VICTIMS to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a complete cache
line is evicted from the cache, it is saved in the victim cache. By saving the most recent lines they
can be fetched much faster, should the processor request them, thereby improving performance. If
the victim cache is not used, all evicted cache lines must be read from memory again when they are
needed.

With the AXI4 interface, C_DCACHE_DATA_WIDTH determines the amount of data transferred
from/to the victim cache each clock cycle, either 32 bits or an entire cache line.

Note that to be able to use the victim cache, write-back must be enabled and area optimization must
not be enabled.

Data Cache Software Support

MSR Bit

The DCE bit in the MSR controls whether or not the cache is enabled. When disabling caches the
user must ensure that all the prior writes within the cacheable range have been completed in external
MicroBlaze Processor Reference Guide www.xilinx.com 75
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
memory before reading back over M_AXI_DP or PLB. This can be done by writing to a semaphore
immediately before turning off caches, and then in a loop poll until it has been written.

The contents of the cache are preserved when the cache is disabled.

WDC Instruction

The optional WDC instruction (C_ALLOW_DCACHE_WR=1) is used to invalidate or flush cache
lines in the data cache from an application. For a detailed description, please refer to Chapter 5,
“MicroBlaze Instruction Set Architecture”.

The WDC instruction can also be used together with parity protection to periodically invalidate
entries the cache, to avoid accumulating errors.
76 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Floating Point Unit (FPU)
Floating Point Unit (FPU)

Overview
The MicroBlaze floating point unit is based on the IEEE 754-1985 standard:

 Uses IEEE 754 single precision floating point format, including definitions for infinity, not-a-
number (NaN), and zero

 Supports addition, subtraction, multiplication, division, comparison, conversion and square
root instructions

 Implements round-to-nearest mode

 Generates sticky status bits for: underflow, overflow, divide-by-zero and invalid operation

For improved performance, the following non-standard simplifications are made:

 Denormalized (1) operands are not supported. A hardware floating point operation on a
denormalized number returns a quiet NaN and sets the sticky denormalized operand error bit in
FSR; see "Floating Point Status Register (FSR)" on page 34

 A denormalized result is stored as a signed 0 with the underflow bit set in FSR. This method is
commonly referred to as Flush-to-Zero (FTZ)

 An operation on a quiet NaN returns the fixed NaN: 0xFFC00000, rather than one of the NaN
operands

 Overflow as a result of a floating point operation always returns signed

Format
An IEEE 754 single precision floating point number is composed of the following three fields:

1. 1-bit sign

2. 8-bit biased exponent

3. 23-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 32 bit word as defined in Figure 2-24:

The value of a floating point number v in MicroBlaze has the following interpretation:

1. If exponent = 255 and fraction <> 0, then v= NaN, regardless of the sign bit

2. If exponent = 255 and fraction = 0, then v= (-1)sign *
3. If 0 < exponent < 255, then v = (-1)sign * 2(exponent-127) * (1.fraction)

4. If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-126 * (0.fraction)

5. If exponent = 0 and fraction = 0, then v = (-1)sign * 0

1. Numbers that are so close to 0, that they cannot be represented with full precision, that is, any number n that falls in the
following ranges: (1.17549*10-38 > n > 0), or (0 > n > -1.17549 * 10-38)

0 1 9 31

sign exponent fraction

Figure 2-24: IEEE 754 Single Precision Format
MicroBlaze Processor Reference Guide www.xilinx.com 77
UG081 (v13.3)

http://www.xilinx.com
http://en.wikipedia.org/wiki/IEEE_754-1985

Chapter 2: MicroBlaze Architecture
For practical purposes only 3 and 5 are useful, while the others all represent either an error or
numbers that can no longer be represented with full precision in a 32 bit format.

Rounding
The MicroBlaze FPU only implements the default rounding mode, “Round-to-nearest”, specified in
IEEE 754. By definition, the result of any floating point operation should return the nearest single
precision value to the infinitely precise result. If the two nearest representable values are equally
near, then the one with its least significant bit zero is returned.

Operations
All MicroBlaze FPU operations use the processors general purpose registers rather than a dedicated
floating point register file, see “General Purpose Registers”.

Arithmetic

The FPU implements the following floating point operations:

 addition, fadd

 subtraction, fsub

 multiplication, fmul

 division, fdiv

 square root, fsqrt (available if C_USE_FPU = 2, EXTENDED)

Comparison

The FPU implements the following floating point comparisons:

 compare less-than, fcmp.lt

 compare equal, fcmp.eq

 compare less-or-equal, fcmp.le

 compare greater-than, fcmp.gt

 compare not-equal, fcmp.ne

 compare greater-or-equal, fcmp.ge

 compare unordered, fcmp.un (used for NaN)

Conversion

The FPU implements the following conversions (available if C_USE_FPU = 2, EXTENDED):

 convert from signed integer to floating point, flt

 convert from floating point to signed integer, fint

Exceptions
The floating point unit uses the regular hardware exception mechanism in MicroBlaze. When
enabled, exceptions are thrown for all the IEEE standard conditions: underflow, overflow, divide-
by-zero, and illegal operation, as well as for the MicroBlaze specific exception: denormalized
operand error.

A floating point exception inhibits the write to the destination register (Rd). This allows a floating
point exception handler to operate on the uncorrupted register file.
78 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Floating Point Unit (FPU)
Software Support
The EDK compiler system, based on GCC, provides support for the Floating Point Unit compliant
with the MicroBlaze API. Compiler flags are automatically added to the GCC command line based
on the type of FPU present in the system, when using XPS or SDK.

All double-precision operations are emulated in software. Be aware that the xil_printf() function
does not support floating-point output. The standard C library printf() and related functions do
support floating-point output, but will increase the program code size.

Libraries and Binary Compatibility

The EDK compiler system only includes software floating point C runtime libraries. To take
advantage of the hardware FPU, the libraries must be recompiled with the appropriate compiler
switches.

For all cases where separate compilation is used, it is very important that you ensure the consistency
of FPU compiler flags throughout the build.

Operator Latencies

The latencies of the various operations supported by the FPU are listed in Chapter 5, “MicroBlaze
Instruction Set Architecture.” The FPU instructions are not pipelined, so only one operation can be
ongoing at any time.

C Language Programming

To gain maximum benefit from the FPU without low-level assembly-language programming, it is
important to consider how the C compiler will interpret your source code. Very often the same
algorithm can be expressed in many different ways, and some are more efficient than others.

Immediate Constants

Floating-point constants in C are double-precision by default. When using a single-precision FPU,
careless coding may result in double-precision software emulation routines being used instead of the
native single-precision instructions. To avoid this, explicitly specify (by cast or suffix) that
immediate constants in your arithmetic expressions are single-precision values.

For example:

float x = 0.0;
…
x += (float)1.0; /* float addition */
x += 1.0F; /* alternative to above */
x += 1.0; /* warning - uses double addition! */

Note that the GNU C compiler can be instructed to treat all floating-point constants as single-
precision (contrary to the ANSI C standard) by supplying the compiler flag -fsingle-precision-
constants.

Avoid unnecessary casting

While conversions between floating-point and integer formats are supported in hardware by the
FPU, when C_USE_FPU is set to 2 (Extended), it is still best to avoid them when possible.

The following “bad” example calculates the sum of squares of the integers from 1 to 10 using
floating-point representation:
MicroBlaze Processor Reference Guide www.xilinx.com 79
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
float sum, t;
int i;
sum = 0.0f;
for (i = 1; i <= 10; i++) {
t = (float)i;
sum += t * t;

}

The above code requires a cast from an integer to a float on each loop iteration. This can be rewritten
as:

float sum, t;
int i;
t = sum = 0.0f;
for(i = 1; i <= 10; i++) {
t += 1.0f;
sum += t * t;

}

Note that the compiler is not at liberty to perform this optimization in general, as the two code
fragments above may give different results in some cases (for example, very large t).

Square root runtime library function

The standard C runtime math library functions operate using double-precision arithmetic. When
using a single-precision FPU, calls to the square root functions (sqrt()) result in inefficient emulation
routines being used instead of FPU instructions:

#include <math.h>
…
float x=-1.0F;
…
x = sqrt(x); /* uses double precision */

Here the math.h header is included to avoid a warning message from the compiler.

When used with single-precision data types, the result is a cast to double, a runtime library call is
made (which does not use the FPU) and then a truncation back to float is performed.

The solution is to use the non-ANSI function sqrtf() instead, which operates using single precision
and can be carried out using the FPU. For example:

#include <math.h>
…
float x=-1.0F;
…
x = sqrtf(x); /* uses single precision */

Note that when compiling this code, the compiler flag -fno-math-errno (in addition to -mhard-float
and -mxl-float-sqrt) must be used, to ensure that the compiler does not generate unnecessary code to
handle error conditions by updating the errno variable.
80 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Stream Link Interfaces
Stream Link Interfaces
MicroBlaze can be configured with up to 16 Fast Simplex Link (FSL) or AXI4-Stream interfaces,
each consisting of one input and one output port. The channels are dedicated uni-directional point-
to-point data streaming interfaces. The parameter C_STREAM_INTERCONNECT is used to select
FSL or AXI4.

For detailed information on the FSL interface, please refer to the Fast Simplex Link (FSL) Bus data-
sheet, DS449, in the Xilinx EDK IP Documentation. For detailed information on the AXI4-Stream
interface, please refer to the AMBA®4 AXI4-Stream Protocol Specification, Version 1.0 document.

The interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the sent/received
word is of control or data type. The get instruction in the MicroBlaze ISA is used to transfer
information from a port to a general purpose register. The put instruction is used to transfer data in
the opposite direction. Both instructions come in 4 flavors: blocking data, non-blocking data,
blocking control, and non-blocking control. For a detailed description of the get and put instructions,
please refer to Chapter 5, “MicroBlaze Instruction Set Architecture”.

Hardware Acceleration
Each link provides a low latency dedicated interface to the processor pipeline. Thus they are ideal
for extending the processors execution unit with custom hardware accelerators. A simple example is
illustrated in Figure 2-25. The code uses RFSLx to indicate the used link, independent of whether
FSL or AXI4-Stream is used.

Figure 2-25: Stream Link Used with HW Accelerated Function fx
This method is similar to extending the ISA with custom instructions, but has the benefit of not
making the overall speed of the processor pipeline dependent on the custom function. Also, there are
no additional requirements on the software tool chain associated with this type of functional
extension.

MicroBlaze

Custom HW Accelerator
Link x// Configure fx

cput Rc,RFSLx

// Store operands

put Ra, RFSLx // op 1

put Rb, RFSLx // op 2

// Load result

get Rt, RFSLx

Example code:

Register
File

ConfigReg

Op1Reg Op2Reg

fx

ResultReg

Link x
MicroBlaze Processor Reference Guide www.xilinx.com 81
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
Debug and Trace

Debug Overview
MicroBlaze features a debug interface to support JTAG based software debugging tools (commonly
known as BDM or Background Debug Mode debuggers) like the Xilinx Microprocessor Debug
(XMD) tool. The debug interface is designed to be connected to the Xilinx Microprocessor Debug
Module (MDM) core, which interfaces with the JTAG port of Xilinx FPGAs. Multiple MicroBlaze
instances can be interfaced with a single MDM to enable multiprocessor debugging. The debugging
features include:

 Configurable number of hardware breakpoints and watchpoints and unlimited software
breakpoints

 External processor control enables debug tools to stop, reset, and single step MicroBlaze

 Read from and write to: memory, general purpose registers, and special purpose register,
except EAR, EDR, ESR, BTR and PVR0 - PVR11, which can only be read

 Support for multiple processors

Trace Overview
The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis. Xilinx recommends that users only use the trace interface through Xilinx
developed analysis cores. This interface is not guaranteed to be backward compatible in future
releases of MicroBlaze.
82 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Fault Tolerance
Fault Tolerance
The fault tolerance features included in MicroBlaze, enabled with C_FAULT_TOLERANT, provide
Error Detection for internal block RAMs, and support for Error Detection and Correction (ECC) in
LMB block RAMs. When fault tolerance is enabled, all soft errors in block RAMs are detected and
corrected, which significantly reduces overall failure intensity.

In addition to protecting block RAM, the FPGA configuration memory also generally needs to be
protected. A detailed explanation of this topic, and further references, can be found in the document
SEU Strategies for Virtex-5 Devices (XAPP864).

Configuration

Using MicroBlaze Configuration

Fault tolerance can be enabled in the MicroBlaze configuration dialog, on the General page.

After enabling fault tolerance in MicroBlaze, ECC is automatically enabled in the connected LMB
BRAM Interface Controllers by the tools, when the system is generated. This means that nothing
else needs to be configured to enable fault tolerance and minimal ECC support.

It is possible (albeit not recommended) to manually override ECC support, leaving the LMB BRAM
unprotected, by disabling C_ECC in the configuration dialogs of all connected LMB BRAM
Interface Controllers. In this case, the internal MicroBlaze block RAM protection is still enabled,
since fault tolerance is enabled.

Using LMB BRAM Interface Controller Configuration

As an alternative to the method described above, it is also possible to enable ECC in the
configuration dialogs of all connected LMB BRAM Interface Controllers. In this case, fault
tolerance is automatically enabled in MicroBlaze by the tools, when the system is generated. This
means that nothing else needs to be configured to enable ECC support and MicroBlaze fault
tolerance.

ECC must either be enabled or disabled in all Controllers, which is enforced by a DRC.

It is possible to manually override fault tolerance support in MicroBlaze, by explicitly disabling
C_FAULT_TOLERANT in the MicroBlaze configuration dialog. This is not recommended, unless
no block RAM is used in MicroBlaze, and there is no need to handle bus exceptions from
uncorrectable ECC errors.

Features
An overview of all MicroBlaze fault tolerance features is given here. Further details on each feature
can be found in the following sections:

 “Instruction Cache Operation”

 “Data Cache Operation”

 “UTLB Management”

 “Branch Target Cache”

 “Instruction Bus Exception”

 “Data Bus Exception”

 “Exception Causes”
MicroBlaze Processor Reference Guide www.xilinx.com 83
UG081 (v13.3)

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp864.pdf

Chapter 2: MicroBlaze Architecture
The LMB BRAM Interface Controller v3.00.a or later provides the LMB ECC implementation. For
details, including performance and resource utilization, see the IP Processor LMB BRAM Interface
Controller (DS452) data-sheet, in the Xilinx EDK IP Documentation.

Instruction and Data Cache Protection

To protect the block RAM in the Instruction and Data Cache, parity is used. When a parity error is
detected, the corresponding cache line is invalidated. This forces the cache to reload the correct
value from external memory. Parity is checked whenever a cache hit occurs.

Note that this scheme only works for write-through, and thus write-back data cache is not available
when fault tolerance is enabled. This is enforced by a DRC.

When new values are written to a block RAM in the cache, parity is also calculated and written. One
parity bit is used for the tag, one parity bit for the instruction cache data, and one parity bit for each
word in a data cache line.

In many cases, enabling fault tolerance does not increase the required number of cache block RAMs,
since spare bits can be used for the parity. Any increase in resource utilization, in particular number
of block RAMs, can easily be seen in the MicroBlaze configuration dialog, when enabling fault
tolerance.

Memory Management Unit Protection

To protect the block RAM in the MMU Unified Translation Look-Aside Buffer (UTLB), parity is
used. When a parity error is detected during an address translation, a TLB miss exception occurs,
forcing software to reload the entry.

When a new TLB entry is written using the TLBHI and TLBLO registers, parity is calculated. One
parity bit is used for each entry.

Parity is also checked when a UTLB entry is read using the TLBHI and TLBLO registers. When a
parity error is detected in this case, the entry is marked invalid by clearing the valid bit.

Enabling fault tolerance does not increase the MMU block RAM size, since a spare bit is available
for the parity.

Branch Target Cache Protection

To protect block RAM in the Branch Target Cache, parity is used. When a parity error is detected
when looking up a branch target address, the address is ignored, forcing a normal branch.

When a new branch address is written to the Branch Target Cache, parity is calculated. One parity
bit is used for each address.

Enabling fault tolerance does not increase the Branch Target Cache block RAM size, since a spare
bit is available for the parity.

Exception Handling

With fault tolerance enabled, if an error occurs in LMB block RAM, the LMB BRAM Interface
Controller generates error signals on the LMB interface.

If exceptions are enabled in MicroBlaze, by setting the EE bit in the Machine Status Register, the
uncorrectable error signal either generates an instruction bus exception or a data bus exception,
depending on the affected interface.

Should a bus exception occur when an exception is in progress, MicroBlaze is halted, and the
external error signal MB_Error is set. This behavior ensures that it is impossible to execute an
instruction corrupted by an uncorrectable error.
84 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Fault Tolerance
Software Support

Scrubbing

To ensure that bit errors are not accumulated in block RAMs, they must be periodically scrubbed.

The standalone BSP provides the function microblaze_scrub() to perform scrubbing of the
entire LMB block RAM and all MicroBlaze internal block RAMs used in a particular configuration.
This function is intended to be called periodically from a timer interrupt routine.

The following example code illustrates how this can be done.

#include "xparameters.h"
#include "xtmrctr.h"
#include "xintc.h"
#include "mb_interface.h"

#define SCRUB_PERIOD ...

XIntc InterruptController; /* The Interrupt Controller instance */
XTmrCtr TimerCounterInst;/* The Timer Counter instance */

void MicroBlazeScrubHandler(void *CallBackRef, u8 TmrCtrNumber)
{
/* Perform other timer interrupt processing here */
microblaze_scrub();

}

int main (void)
{
int Status;

/*
 * Initialize the timer counter so that it's ready to use,
 * specify the device ID that is generated in xparameters.h
 */
Status = XTmrCtr_Initialize(&TimerCounterInst, TMRCTR_DEVICE_ID);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Connect the timer counter to the interrupt subsystem such that
 * interrupts can occur.
 */
Status = XIntc_Initialize(&InterruptController, INTC_DEVICE_ID);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Connect a device driver handler that will be called when an
 * interrupt for the device occurs, the device driver handler performs
 * the specific interrupt processing for the device
 */
Status = XIntc_Connect(&InterruptController, TMRCTR_DEVICE_ID,

(XInterruptHandler)XTmrCtr_InterruptHandler,
(void *) &TimerCounterInst);

if (Status != XST_SUCCESS) {
MicroBlaze Processor Reference Guide www.xilinx.com 85
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
return XST_FAILURE;
}

/*
 * Start the interrupt controller such that interrupts are enabled for
 * all devices that cause interrupts, specifying real mode so that the
 * timer counter can cause interrupts thru the interrupt controller.
 */
Status = XIntc_Start(&InterruptController, XIN_REAL_MODE);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Setup the handler for the timer counter that will be called from the
 * interrupt context when the timer expires, specify a pointer to the
 * timer counter driver instance as the callback reference so the
 * handler is able to access the instance data
 */
XTmrCtr_SetHandler(&TimerCounterInst, MicroBlazeScrubHandler,

 &TimerCounterInst);

/*
 * Enable the interrupt of the timer counter so interrupts will occur
 * and use auto reload mode such that the timer counter will reload
 * itself automatically and continue repeatedly, without this option
 * it would expire once only
 */
XTmrCtr_SetOptions(&TimerCounterInst, TIMER_CNTR_0,

XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION);

/*
 * Set a reset value for the timer counter such that it will expire
 * earlier than letting it roll over from 0, the reset value is loaded
 * into the timer counter when it is started
 */
XTmrCtr_SetResetValue(TmrCtrInstancePtr,TmrCtrNumber,SCRUB_PERIOD);

/*
 * Start the timer counter such that it's incrementing by default,
 * then wait for it to timeout a number of times
 */
XTmrCtr_Start(&TimerCounterInst, TIMER_CNTR_0);

...
}

See the section “Scrubbing” below for further details on how scrubbing is implemented, including
how to calculate the scrubbing rate.

BRAM Driver

The standalone BSP BRAM driver is used to access the ECC registers in the LMB BRAM Interface
Controller, and also provides a comprehensive self test.

By implementing the SDK Xilinx C Project "Peripheral Tests", a self-test example including the
BRAM self test for each LMB BRAM Interface Controller in the system is generated. Depending on
the ECC features enabled in the LMB BRAM Interface Controller, this code will perform all
possible tests of the ECC function.
86 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Fault Tolerance
The self-test example can be found in the standalone BSP BRAM driver source code, typically in the
subdirectory microblaze_0/libsrc/bram_v3_00_a/src/xbram_selftest.c.

Scrubbing

Scrubbing Methods

Scrubbing is performed using specific methods for the different block RAMs:

 Instruction and data caches: All lines in the caches are cyclically invalidated using the WIC
and WDC instructions respectively. This forces the cache to reload the cache line from external
memory.

 Memory Management Unit UTLB: All entries in the UTLB are cyclically invalidated by
writing the TLBHI register with the valid bit cleared.

 Branch Target Cache: The entire BTC is invalided by doing a synchronizing branch, BRI 4.

 LMB block RAM: All addresses in the memory are cyclically read and written, thus correcting
any single bit errors on each address.

It is also possible to add interrupts for correctable errors from the LMB BRAM Interface
Controllers, and immediately scrub this address in the interrupt handler, although in most cases it
only improves reliability slightly.

The failing address can be determined by reading the Correctable Error First Failing Address
Register in each of the LMB BRAM Interface Controllers. To be able to generate an interrupt
C_ECC_STATUS_REGISTERS must be set to 1 in the connected LMB BRAM Interface
Controllers, and to read the failing address C_CE_FAILING_REGISTERS must be set to 1.

Calculating Scrubbing Rate

The scrubbing rate depends on failure intensity and desired reliability.

The approximate equation to determine the LMB memory scrubbing rate is in our case given by

where PW is the probability of an uncorrectable error in a memory word, BER is the soft error rate
for a single memory bit, and SR is the Scrubbing Rate.

The soft error rates affecting block RAM for each product family can be found in Device Reliability
Report (UG116).

Use Cases
Several of common use cases are described here. These use cases are derived from the IP Processor
LMB BRAM Interface Controller (DS452) data-sheet.

Minimal

This system is obtained when enabling fault tolerance in MicroBlaze, without doing any other
configuration.

The system is suitable when area constraints are high, and there is no need for testing of the ECC
function, or analysis of error frequency and location. No ECC registers are implemented. Single bit
errors are corrected by the ECC logic before being passed to MicroBlaze. Uncorrectable errors set
an error signal, which generates an exception in MicroBlaze.

PW 760
2BER

SR
2

MicroBlaze Processor Reference Guide www.xilinx.com 87
UG081 (v13.3)

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf

Chapter 2: MicroBlaze Architecture
Small

This system should be used when it is necessary to monitor error frequency, but there is no need for
testing of the ECC function. It is a minimal system with Correctable Error Counter Register added
to monitor single bit error rates. If the error rate is too high, the scrubbing rate should be increased
to minimize the risk of a single bit error becoming an uncorrectable double bit error. Parameters set
are C_ECC = 1 and C_CE_COUNTER_WIDTH = 10.

Typical

This system represents a typical use case, where it is required to monitor error frequency, as well as
generating an interrupt to immediately correct a single bit error through software. It does not provide
support for testing of the ECC function. It is a small system with Correctable Error First Failing
registers and Status register added. A single bit error will latch the address for the access into the
Correctable Error First Failing Address Register and set the CE_STATUS bit in the ECC Status
Register. An interrupt will be generated triggering MicroBlaze to read the failing address and then
perform a read followed by a write on the failing address. This will remove the single bit error from
the BRAM, thus reducing the risk of the single bit error becoming a uncorrectable double bit error.
Parameters set are C_ECC = 1, C_CE_COUNTER_WIDTH = 10, C_ECC_STATUS_REGISTER = 1
and C_CE_FAILING_REGISTERS = 1.

Full

This system uses all of the features provided by the LMB BRAM Interface Controller, to enable full
error injection capability, as well as error monitoring and interrupt generation. It is a typical system
with Uncorrectable Error First Failing registers and Fault Injection registers added. All features are
switched on for full control of ECC functionality for system debug or systems with high fault
tolerance requirements. Parameters set are C_ECC = 1, C_CE_COUNTER_WIDTH = 10,
C_ECC_STATUS_REGISTER = 1 and C_CE_FAILING_REGISTERS = 1,
C_UE_FAILING_REGISTERS = 1 and C_FAULT_INJECT = 1.
88 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Lockstep Operation
Lockstep Operation
MicroBlaze is able to operate in a lockstep configuration, where two or more identical MicroBlaze
cores execute the same program. By comparing the outputs of the cores, any tampering attempts,
transient faults or permanent hardware faults can be detected.

System Configuration
The parameter C_LOCKSTEP_SLAVE is set to one on all slave MicroBlaze cores in the system,
except the master (or primary) core. The master core drives all the output signals, and handles the
debug functionality. The port Lockstep_Master_Out on the master is connected to the port
Lockstep_Slave_In on the slaves, in order to handle debugging.

The slave cores should not drive any output signals, only receive input signals. This must be ensured
by only connecting signals to the input ports of the slaves. For buses this means that each individual
input port must be explicitly connected.

The port Lockstep_Out on the master and slave cores provide all output signals for comparison.
Unless an error occurs, individual signals from each of the cores are identical every clock cycle.

To ensure that lockstep operation works properly, all input signals to the cores must be synchronous.
Input signals that may require external synchronization are Interrupt, Reset, Mb_Reset,
Ext_Brk, and Ext_Nm_Brk.

Use Cases
Two common use cases are described here. In addition, lockstep operation provides the basis for
implementing triple modular redundancy on MicroBlaze core level.

Tamper Protection

This application represents a high assurance use case, where it is required that the system is tamper-
proof. A typically example is a cryptographic application.

The approach involves having two redundant MicroBlaze processors with dedicated local memory
and redundant comparators, each in a protected area. The outputs from each processor feed two
comparators and each processor receive copies of every input signal.

The redundant MicroBlaze processors are functionally identical and completely independent of
each other, without any connecting signals. The only exception is debug logic and associated
signals, since it is assumed that debugging is disabled before any productization and certification of
the system.

The outputs from the master MicroBlaze core drive the peripherals in the system. All data leaving
the protected area pass through inhibitors. Each inhibitor is controlled from its associated
comparator.

Each protected area of the design must be implemented in its own partition, using a hierarchical
Single Chip Cryptography (SCC) flow. A detailed explanation of this flow, and further references,
can be found in the document Hierarchical Design Methodology Guide (UG748).

For Spartan-6 target architectures, the parameter C_AVOID_PRIMITIVES must be set to 3
(BOTH) in order to follow the SCC flow.

A block diagram of the system is shown in Figure 2-26.
MicroBlaze Processor Reference Guide www.xilinx.com 89
UG081 (v13.3)

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.3&topic=sw+manuals&sub=Hierarchical_Design_Methodology_Guide.pdf

Chapter 2: MicroBlaze Architecture
.

Error Detection

The error detection use case requires that all transient and permanent faults are detected. This is
essential in fail safe and fault tolerant applications, where redundancy is utilized to improve system
availability.

In this system two redundant MicroBlaze processors run in lockstep. A comparator is used to signal
an error when a mis-match is detected on the outputs of the two processors. Any error immediately
causes both processors to halt, preventing further error propagation.

The redundant MicroBlaze processors are functionally identical, except for debug logic and
associated signals.The outputs from the master MicroBlaze core drive the peripherals in the system.

The system contains the basic building block for designing a complete fault tolerant application,
where one or more additional blocks must be added to provide redundancy.

This use case is illustrated in Figure 2-27.

Figure 2-26: Lockstep Tamper Protection Application

Debug Interface - Removed for Production

MicroBlaze Partition

BRAM

MicroBlaze
Debug Module

MicroBlaze Partition

MicroBlaze
Slave

Debug

C_LOCKSTEP_SLAVE = 1

Comparator Partition

Comparator

Inhibit

MicroBlaze
Master

Debug

C_LOCKSTEP_SLAVE = 0

BRAM

Comparator Partition

Comparator

Lockstep_Master_Out

Lockstep_Slave_In

Lockstep_Out

Lockstep_Out

Inputs

Outputs

Inhibit

Inputs
BRAM Controller

DLMB

BRAM Controller

ILMB

BRAM Controller
DLMB

BRAM Controller

ILMB

I/O Interfaces

External Memory
Interfaces

Peripheral
Partition
90 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Lockstep Operation
Figure 2-27: Lockstep Error Detection Application

BRAM Controller

BRAM Controller

ILMB

DLMB

BRAM

MicroBlaze
Debug Module

MicroBlaze
Slave

Debug

C_LOCKSTEP_SLAVE = 1

MicroBlaze
Master

Debug

C_LOCKSTEP_SLAVE = 0 Error Reset

Comparator

Lockstep_Out

Lockstep_Out

Outputs

Inputs

Inputs

I/O Interfaces

External Memory
Interfaces
MicroBlaze Processor Reference Guide www.xilinx.com 91
UG081 (v13.3)

http://www.xilinx.com

Chapter 2: MicroBlaze Architecture
92 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Chapter 3

MicroBlaze Signal Interface Description

This chapter describes the types of signal interfaces that can be used to connect MicroBlaze™.

Overview
The MicroBlaze core is organized as a Harvard architecture with separate bus interface units for data
and instruction accesses. The following four memory interfaces are supported: Local Memory Bus
(LMB), the AMBA® AXI4 interface (AXI4), the IBM Processor Local Bus (PLB), and Xilinx
CacheLink (XCL). The LMB provides single-cycle access to on-chip dual-port block RAM. The
AXI4 and PLB interfaces provide a connection to both on-chip and off-chip peripherals and
memory. The CacheLink interface is intended for use with specialized external memory controllers.
MicroBlaze also supports up to 16 Fast Simplex Link (FSL) or AXI4-Stream interface ports, each
with one master and one slave interface.

Features
MicroBlaze can be configured with the following bus interfaces:

 The AMBA AXI4 Interface (see ARM® AMBA® AXI Protocol Specification, Version 2.0,
ARM IHI 0022C), both for peripheral interfaces and cache interfaces.

 A 32-bit version of the PLB V4.6 interface (see IBM’s 128-Bit Processor Local Bus
Architectural Specifications, Version 4.6).

 LMB provides simple synchronous protocol for efficient block RAM transfers

 FSL or AXI4-Stream provides a fast non-arbitrated streaming communication mechanism

 XCL provides a fast slave-side arbitrated streaming interface between caches and external
memory controllers

 Debug interface for use with the Microprocessor Debug Module (MDM) core

 Trace interface for performance analysis
MicroBlaze Processor Reference Guide www.xilinx.com 93
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
MicroBlaze I/O Overview
The core interfaces shown in Figure 3-1 and the following Table 3-1 are defined as follows:

M_AXI_DP: Peripheral Data Interface, AXI4-Lite or AXI4 interface
DPLB: Data interface, Processor Local Bus

DLMB: Data interface, Local Memory Bus (BRAM only)
M_AXI_IP: Peripheral Instruction interface, AXI4-Lite interface

IPLB: Instruction interface, Processor Local Bus
ILMB: Instruction interface, Local Memory Bus (BRAM only)

M0_AXIS..M15_AXIS: AXI4-Stream interface master direct connection interfaces

S0_AXIS..S15_AXIS: AXI4-Stream interface slave direct connection interfaces

MFSL 0..15: FSL master interfaces

DWFSL 0..15: FSL master direct connection interfaces

SFSL 0..15: FSL slave interfaces
DRFSL 0..15: FSL slave direct connection interfaces

DXCL: Data side Xilinx CacheLink interface (FSL master/slave pair)

M_AXI_DC: Data side cache AXI4 interface

IXCL: Instruction side Xilinx CacheLink interface (FSL master/slave pair)

M_AXI_IC: Instruction side cache AXI4 interface

Core: Miscellaneous signals for: clock, reset, debug, and trace

Figure 3-1: MicroBlaze Core Block Diagram

DXCL_M

DXCL_S

Data-sideInstruction-side

IPLB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

IXCL_M

IXCL_S
I-C

ache

D
-C

a
che

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose
Registers

Optional MicroBlaze feature

M_AXI_IP

UTLBITLB DTLB

Memory Management Unit (MMU)

DPLB

DLMB

M_AXI_DP

MFSL 0..15
DWFSL 0..15
SFSL 0..15
DRFSL 0..15

or

or

M_AXI_IC M_AXI_DC

Branch
Target
Cache

M0_AXIS..

S0_AXIS..
M15_AXIS

S15_AXIS
94 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze I/O Overview
Table 3-1: Summary of MicroBlaze Core I/O

Signal Interface I/O Description

M_AXI_DP_AWID M_AXI_DP O Master Write address ID

M_AXI_DP_AWADDR M_AXI_DP O Master Write address

M_AXI_DP_AWLEN M_AXI_DP O Master Burst length

M_AXI_DP_AWSIZE M_AXI_DP O Master Burst size

M_AXI_DP_AWBURST M_AXI_DP O Master Burst type

M_AXI_DP_AWLOCK M_AXI_DP O Master Lock type

M_AXI_DP_AWCACHE M_AXI_DP O Master Cache type

M_AXI_DP_AWPROT M_AXI_DP O Master Protection type

M_AXI_DP_AWQOS M_AXI_DP O Master Quality of Service

M_AXI_DP_AWVALID M_AXI_DP O Master Write address valid

M_AXI_DP_AWREADY M_AXI_DP I Slave Write address ready

M_AXI_DP_WDATA M_AXI_DP O Master Write data

M_AXI_DP_WSTRB M_AXI_DP O Master Write strobes

M_AXI_DP_WLAST M_AXI_DP O Master Write last

M_AXI_DP_WVALID M_AXI_DP O Master Write valid

M_AXI_DP_WREADY M_AXI_DP I Slave Write ready

M_AXI_DP_BID M_AXI_DP I Slave Response ID

M_AXI_DP_BRESP M_AXI_DP I Slave Write response

M_AXI_DP_BVALID M_AXI_DP I Slave Write response valid

M_AXI_DP_BREADY M_AXI_DP O Master Response ready

M_AXI_DP_ARID M_AXI_DP O Master Read address ID

M_AXI_DP_ARADDR M_AXI_DP O Master Read address

M_AXI_DP_ARLEN M_AXI_DP O Master Burst length

M_AXI_DP_ARSIZE M_AXI_DP O Master Burst size

M_AXI_DP_ARBURST M_AXI_DP O Master Burst type

M_AXI_DP_ARLOCK M_AXI_DP O Master Lock type

M_AXI_DP_ARCACHE M_AXI_DP O Master Cache type

M_AXI_DP_ARPROT M_AXI_DP O Master Protection type

M_AXI_DP_ARQOS M_AXI_DP O Master Quality of Service

M_AXI_DP_ARVALID M_AXI_DP O Master Read address valid

M_AXI_DP_ARREADY M_AXI_DP I Slave Read address ready
MicroBlaze Processor Reference Guide www.xilinx.com 95
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DP_RID M_AXI_DP I Slave Read ID tag

M_AXI_DP_RDATA M_AXI_DP I Slave Read data

M_AXI_DP_RRESP M_AXI_DP I Slave Read response

M_AXI_DP_RLAST M_AXI_DP I Slave Read last

M_AXI_DP_RVALID M_AXI_DP I Slave Read valid

M_AXI_DP_RREADY M_AXI_DP O Master Read ready

M_AXI_IP_AWID M_AXI_IP O Master Write address ID

M_AXI_IP_AWADDR M_AXI_IP O Master Write address

M_AXI_IP_AWLEN M_AXI_IP O Master Burst length

M_AXI_IP_AWSIZE M_AXI_IP O Master Burst size

M_AXI_IP_AWBURST M_AXI_IP O Master Burst type

M_AXI_IP_AWLOCK M_AXI_IP O Master Lock type

M_AXI_IP_AWCACHE M_AXI_IP O Master Cache type

M_AXI_IP_AWPROT M_AXI_IP O Master Protection type

M_AXI_IP_AWQOS M_AXI_IP O Master Quality of Service

M_AXI_IP_AWVALID M_AXI_IP O Master Write address valid

M_AXI_IP_AWREADY M_AXI_IP I Slave Write address ready

M_AXI_IP_WDATA M_AXI_IP O Master Write data

M_AXI_IP_WSTRB M_AXI_IP O Master Write strobes

M_AXI_IP_WLAST M_AXI_IP O Master Write last

M_AXI_IP_WVALID M_AXI_IP O Master Write valid

M_AXI_IP_WREADY M_AXI_IP I Slave Write ready

M_AXI_IP_BID M_AXI_IP I Slave Response ID

M_AXI_IP_BRESP M_AXI_IP I Slave Write response

M_AXI_IP_BVALID M_AXI_IP I Slave Write response valid

M_AXI_IP_BREADY M_AXI_IP O Master Response ready

M_AXI_IP_ARID M_AXI_IP O Master Read address ID

M_AXI_IP_ARADDR M_AXI_IP O Master Read address

M_AXI_IP_ARLEN M_AXI_IP O Master Burst length

M_AXI_IP_ARSIZE M_AXI_IP O Master Burst size

M_AXI_IP_ARBURST M_AXI_IP O Master Burst type

M_AXI_IP_ARLOCK M_AXI_IP O Master Lock type

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
96 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze I/O Overview
M_AXI_IP_ARCACHE M_AXI_IP O Master Cache type

M_AXI_IP_ARPROT M_AXI_IP O Master Protection type

M_AXI_IP_ARQOS M_AXI_IP O Master Quality of Service

M_AXI_IP_ARVALID M_AXI_IP O Master Read address valid

M_AXI_IP_ARREADY M_AXI_IP I Slave Read address ready

M_AXI_IP_RID M_AXI_IP I Slave Read ID tag

M_AXI_IP_RDATA M_AXI_IP I Slave Read data

M_AXI_IP_RRESP M_AXI_IP I Slave Read response

M_AXI_IP_RLAST M_AXI_IP I Slave Read last

M_AXI_IP_RVALID M_AXI_IP I Slave Read valid

M_AXI_IP_RREADY M_AXI_IP O Master Read ready

M_AXI_DC_AWADDR M_AXI_DC O Master Write address

M_AXI_DC_AWLEN M_AXI_DC O Master Burst length

M_AXI_DC_AWSIZE M_AXI_DC O Master Burst size

M_AXI_DC_AWBURST M_AXI_DC O Master Burst type

M_AXI_DC_AWLOCK M_AXI_DC O Master Lock type

M_AXI_DC_AWCACHE M_AXI_DC O Master Cache type

M_AXI_DC_AWPROT M_AXI_DC O Master Protection type

M_AXI_DC_AWQOS M_AXI_DC O Master Quality of Service

M_AXI_DC_AWVALID M_AXI_DC O Master Write address valid

M_AXI_DC_AWREADY M_AXI_DC I Slave Write address ready

M_AXI_DC_AWUSER M_AXI_DC O Master Write address user signals

M_AXI_DC_WDATA M_AXI_DC O Master Write data

M_AXI_DC_WSTRB M_AXI_DC O Master Write strobes

M_AXI_DC_WLAST M_AXI_DC O Master Write last

M_AXI_DC_WVALID M_AXI_DC O Master Write valid

M_AXI_DC_WREADY M_AXI_DC I Slave Write ready

M_AXI_DC_WUSER M_AXI_DC O Master Write user signals

M_AXI_DC_BRESP M_AXI_DC I Slave Write response

M_AXI_DC_BID M_AXI_DC I Slave Response ID

M_AXI_DC_BVALID M_AXI_DC I Slave Write response valid

M_AXI_DC_BREADY M_AXI_DC O Master Response ready

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 97
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DC_BUSER M_AXI_DC I Slave Write response user signals

M_AXI_DC_ARID M_AXI_DC O Master Read address ID

M_AXI_DC_ARADDR M_AXI_DC O Master Read address

M_AXI_DC_ARLEN M_AXI_DC O Master Burst length

M_AXI_DC_ARSIZE M_AXI_DC O Master Burst size

M_AXI_DC_ARBURST M_AXI_DC O Master Burst type

M_AXI_DC_ARLOCK M_AXI_DC O Master Lock type

M_AXI_DC_ARCACHE M_AXI_DC O Master Cache type

M_AXI_DC_ARPROT M_AXI_DC O Master Protection type

M_AXI_DC_ARQOS M_AXI_DC O Master Quality of Service

M_AXI_DC_ARVALID M_AXI_DC O Master Read address valid

M_AXI_DC_ARREADY M_AXI_DC I Slave Read address ready

M_AXI_DC_ARUSER M_AXI_DC O Master Read address user signals

M_AXI_DC_RID M_AXI_DC I Slave Read ID tag

M_AXI_DC_RDATA M_AXI_DC I Slave Read data

M_AXI_DC_RRESP M_AXI_DC I Slave Read response

M_AXI_DC_RLAST M_AXI_DC I Slave Read last

M_AXI_DC_RVALID M_AXI_DC I Slave Read valid

M_AXI_DC_RREADY M_AXI_DC O Master Read ready

M_AXI_DC_RUSER M_AXI_DC I Slave Read user signals

M_AXI_IC_AWID M_AXI_IC O Master Write address ID

M_AXI_IC_AWADDR M_AXI_IC O Master Write address

M_AXI_IC_AWLEN M_AXI_IC O Master Burst length

M_AXI_IC_AWSIZE M_AXI_IC O Master Burst size

M_AXI_IC_AWBURST M_AXI_IC O Master Burst type

M_AXI_IC_AWLOCK M_AXI_IC O Master Lock type

M_AXI_IC_AWCACHE M_AXI_IC O Master Cache type

M_AXI_IC_AWPROT M_AXI_IC O Master Protection type

M_AXI_IC_AWQOS M_AXI_IC O Master Quality of Service

M_AXI_IC_AWVALID M_AXI_IC O Master Write address valid

M_AXI_IC_AWREADY M_AXI_IC I Slave Write address ready

M_AXI_IC_AWUSER M_AXI_IC O Master Write address user signals

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
98 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze I/O Overview
M_AXI_IC_WDATA M_AXI_IC O Master Write data

M_AXI_IC_WSTRB M_AXI_IC O Master Write strobes

M_AXI_IC_WLAST M_AXI_IC O Master Write last

M_AXI_IC_WVALID M_AXI_IC O Master Write valid

M_AXI_IC_WREADY M_AXI_IC I Slave Write ready

M_AXI_IC_WUSER M_AXI_IC O Master Write user signals

M_AXI_IC_BID M_AXI_IC I Slave Response ID

M_AXI_IC_BRESP M_AXI_IC I Slave Write response

M_AXI_IC_BVALID M_AXI_IC I Slave Write response valid

M_AXI_IC_BREADY M_AXI_IC O Master Response ready

M_AXI_IC_BUSER M_AXI_IC I Slave Write response user signals

M_AXI_IC_ARID M_AXI_IC O Master Read address ID

M_AXI_IC_ARADDR M_AXI_IC O Master Read address

M_AXI_IC_ARLEN M_AXI_IC O Master Burst length

M_AXI_IC_ARSIZE M_AXI_IC O Master Burst size

M_AXI_IC_ARBURST M_AXI_IC O Master Burst type

M_AXI_IC_ARLOCK M_AXI_IC O Master Lock type

M_AXI_IC_ARCACHE M_AXI_IC O Master Cache type

M_AXI_IC_ARPROT M_AXI_IC O Master Protection type

M_AXI_IC_ARQOS M_AXI_IC O Master Quality of Service

M_AXI_IC_ARVALID M_AXI_IC O Master Read address valid

M_AXI_IC_ARREADY M_AXI_IC I Slave Read address ready

M_AXI_IC_ARUSER M_AXI_IC O Master Read address user signals

M_AXI_IC_RID M_AXI_IC I Slave Read ID tag

M_AXI_IC_RDATA M_AXI_IC I Slave Read data

M_AXI_IC_RRESP M_AXI_IC I Slave Read response

M_AXI_IC_RLAST M_AXI_IC I Slave Read last

M_AXI_IC_RVALID M_AXI_IC I Slave Read valid

M_AXI_IC_RREADY M_AXI_IC O Master Read ready

M_AXI_IC_RUSER M_AXI_IC I Slave Read user signals

DPLB_M_ABort DPLB O Data Interface PLB abort bus request
indicator

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 99
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
DPLB_M_ABus DPLB O Data Interface PLB address bus

DPLB_M_UABus DPLB O Data Interface PLB upper address bus

DPLB_M_BE DPLB O Data Interface PLB byte enables

DPLB_M_busLock DPLB O Data Interface PLB bus lock

DPLB_M_lockErr DPLB O Data Interface PLB lock error indicator

DPLB_M_MSize DPLB O Data Interface PLB master data bus size

DPLB_M_priority DPLB O Data Interface PLB bus request priority

DPLB_M_rdBurst DPLB O Data Interface PLB burst read transfer
indicator

DPLB_M_request DPLB O Data Interface PLB bus request

DPLB_M_RNW DPLB O Data Interface PLB read/not write

DPLB_M_size DPLB O Data Interface PLB transfer size

DPLB_M_TAttribute DPLB O Data Interface PLB Transfer Attribute bus

DPLB_M_type DPLB O Data Interface PLB transfer type

DPLB_M_wrBurst DPLB O Data Interface PLB burst write transfer
indicator

DPLB_M_wrDBus DPLB O Data Interface PLB write data bus

DPLB_MBusy DPLB I Data Interface PLB slave busy indicator

DPLB_MRdErr DPLB I Data Interface PLB slave read error indicator

DPLB_MWrErr DPLB I Data Interface PLB slave write error
indicator

DPLB_MIRQ DPLB I Data Interface PLB slave interrupt indicator

DPLB_MWrBTerm DPLB I Data Interface PLB terminate write burst
indicator

DPLB_MWrDAck DPLB I Data Interface PLB write data acknowledge

DPLB_MAddrAck DPLB I Data Interface PLB address acknowledge

DPLB_MRdBTerm DPLB I Data Interface PLB terminate read burst
indicator

DPLB_MRdDAck DPLB I Data Interface PLB read data acknowledge

DPLB_MRdDBus DPLB I Data Interface PLB read data bus

DPLB_MRdWdAddr DPLB I Data Interface PLB read word address

DPLB_MRearbitrate DPLB I Data Interface PLB bus rearbitrate indicator

DPLB_MSSize DPLB I Data Interface PLB slave data bus size

DPLB_MTimeout DPLB I Data Interface PLB bus timeout

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
100 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze I/O Overview
IPLB_M_ABort IPLB O Instruction Interface PLB abort bus request
indicator

IPLB_M_ABus IPLB O Instruction Interface PLB address bus

IPLB_M_UABus IPLB O Instruction Interface PLB upper address bus

IPLB_M_BE IPLB O Instruction Interface PLB byte enables

IPLB_M_busLock IPLB O Instruction Interface PLB bus lock

IPLB_M_lockErr IPLB O Instruction Interface PLB lock error
indicator

IPLB_M_MSize IPLB O Instruction Interface PLB master data bus
size

IPLB_M_priority IPLB O Instruction Interface PLB bus request
priority

IPLB_M_rdBurst IPLB O Instruction Interface PLB burst read transfer
indicator

IPLB_M_request IPLB O Instruction Interface PLB bus request

IPLB_M_RNW IPLB O Instruction Interface PLB read/not write

IPLB_M_size IPLB O Instruction Interface PLB transfer size

IPLB_M_TAttribute IPLB O Instruction Interface PLB Transfer Attribute
bus

IPLB_M_type IPLB O Instruction Interface PLB transfer type

IPLB_M_wrBurst IPLB O Instruction Interface PLB burst write transfer
indicator

IPLB_M_wrDBus IPLB O Instruction Interface PLB write data bus

IPLB_MBusy IPLB I Instruction Interface PLB slave busy
indicator

IPLB_MRdErr IPLB I Instruction Interface PLB slave read error
indicator

IPLB_MWrErr IPLB I Instruction Interface PLB slave write error
indicator

IPLB_MIRQ IPLB I Instruction Interface PLB slave interrupt
indicator

IPLB_MWrBTerm IPLB I Instruction Interface PLB terminate write
burst indicator

IPLB_MWrDAck IPLB I Instruction Interface PLB write data
acknowledge

IPLB_MAddrAck IPLB I Instruction Interface PLB address
acknowledge

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 101
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
IPLB_MRdBTerm IPLB I Instruction Interface PLB terminate read
burst indicator

IPLB_MRdDAck IPLB I Instruction Interface PLB read data
acknowledge

IPLB_MRdDBus IPLB I Instruction Interface PLB read data bus

IPLB_MRdWdAddr IPLB I Instruction Interface PLB read word address

IPLB_MRearbitrate IPLB I Instruction Interface PLB bus rearbitrate
indicator

IPLB_MSSize IPLB I Instruction Interface PLB slave data bus size

IPLB_MTimeout IPLB I Instruction Interface PLB bus timeout

Data_Addr[0:31] DLMB O Data interface LMB address bus

Byte_Enable[0:3] DLMB O Data interface LMB byte enables

Data_Write[0:31] DLMB O Data interface LMB write data bus

D_AS DLMB O Data interface LMB address strobe

Read_Strobe DLMB O Data interface LMB read strobe

Write_Strobe DLMB O Data interface LMB write strobe

Data_Read[0:31] DLMB I Data interface LMB read data bus

DReady DLMB I Data interface LMB data ready

DWait DLMB I Data interface LMB data wait

DCE DLMB I Data interface LMB correctable error

DUE DLMB I Data interface LMB uncorrectable error

Instr_Addr[0:31] ILMB O Instruction interface LMB address bus

I_AS ILMB O Instruction interface LMB address strobe

IFetch ILMB O Instruction interface LMB instruction fetch

Instr[0:31] ILMB I Instruction interface LMB read data bus

IReady ILMB I Instruction interface LMB data ready

IWait ILMB I Instruction interface LMB data wait

ICE ILMB I Instruction interface LMB correctable error

IUE ILMB I Instruction interface LMB uncorrectable
error

Mn_AXIS_TLAST M0_AXIS..
M15_AXIS

O Master interface output AXI4 channels
write last

Mn_AXIS_TDATA M0_AXIS..
M15_AXIS

O Master interface output AXI4 channels
write data

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
102 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze I/O Overview
Mn_AXIS_TVALID M0_AXIS..
M15_AXIS

O Master interface output AXI4 channels
write valid

Mn_AXIS_TREADY M0_AXIS..
M15_AXIS

I Master interface input AXI4 channels
write ready

Sn_AXIS_TLAST S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels
write last

Sn_AXIS_TDATA S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels
write data

Sn_AXIS_TVALID S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels
write valid

Sn_AXIS_TREADY S0_AXIS..
S15_AXIS

O Slave interface output AXI4 channels
write ready

FSL0_M .. FSL15_M MFSL

or

DWFSL

O Master interface to output FSL channels

MFSL is used for FSL bus connections,
whereas DWFSL is used for direct
connections with FSL slaves

FSL0_S .. FSL15_S SFSL

or

DRFSL

I Slave interface to input FSL channels

SFSL is used for FSL bus connections,
whereas DRFSL is used for direct
connections with FSL masters

ICache_FSL_in... IXCL_S IO Instruction side CacheLink FSL slave
interface

ICache_FSL_out... IXCL_M IO Instruction side CacheLink FSL master
interface

DCache_FSL_in... DXCL_S IO Data side CacheLink FSL slave interface

DCache_FSL_out... DXCL_M IO Data side CacheLink FSL master interface

Interrupt Core I Interrupt

Reset1 Core I Core reset, active high. Should be held for at
least 1 Clk clock cycle.

MB_Reset1 Core I Core reset, active high. Should be held for at
least 1 Clk clock cycle.

Clk Core I Clock2

Ext_BRK Core I Break signal from MDM

Ext_NM_BRK Core I Non-maskable break signal from MDM

MB_Halted Core O Pipeline is halted, either via the Debug
Interface or by setting Dbg_Stop

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 103
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
AXI4 Interface Description

Memory Mapped Interfaces

Peripheral Interfaces

The MicroBlaze AXI4 memory mapped peripheral interfaces are implemented as 32-bit masters.
Each of these interfaces only have a single outstanding transaction at any time, and all transactions
are completed in order.

 The instruction peripheral interface (M_AXI_IP) only performs single word read accesses, and
is always set to use the AXI4-Lite subset.

 The data peripheral interface (M_AXI_DP) performs single word accesses, and is set to use the
AXI4-Lite subset as default, but is set to use AXI4 when enabling exclusive access for LWX
and SWX instructions. Halfword and byte writes are performed by setting the appropriate byte
strobes.

Cache Interfaces

The AXI4 memory mapped cache interfaces are implemented either as AXI4 32-bit, 128-bit, 256-
bit, or 512-bit masters, depending on cache line length and data width parameters.

 With a 32-bit master, the instruction cache interface (M_AXI_IC) performs 4 word or 8 word
burst read accesses, depending on cache line length. With 128-bit, 256-bit, or 512-bit masters,
only single read accesses are performed.

This interface can have multiple outstanding transactions, issuing up to 2 transactions or up to
5 transactions when stream cache is enabled. The stream cache can request two cache lines in
advance, which means that in some cases 5 outstanding transactions can occur. When stream

Dbg_Stop Core I Unconditionally force pipeline to halt as
soon as possible. Rising-edge detected pulse
that should be held for at least 1 Clk clock
cycle. The signal only has any effect when
C_DEBUG_ENABLED is set to 1.

MB_Error Core O Pipeline is halted due to a missed exception,
when C_FAULT_TOLERANT is set to 1.

Lockstep_... Core IO Lockstep signals for high integrity
applications. See Table 3-10 for details.

Dbg_... Core IO Debug signals from MDM. See Table 3-12
for details.

Trace_... Core O Trace signals for real time HW analysis. See
Table 3-13 for details.

1. The Reset and MB_Reset signals are functionally equivalent. MB_Reset is intended for the AXI4 and PLB
interfaces.

2. MicroBlaze is a synchronous design clocked with the Clk signal, except for hardware debug logic, which is
clocked with the Dbg_Clk signal. If hardware debug logic is not used, there is no minimum frequency limit for
Clk. However, if hardware debug logic is used, there are signals transferred between the two clock regions. In this
case Clk must have a higher frequency than Dbg_Clk.

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
104 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

AXI4 Interface Description
cache is enabled, C_INTERCONNECT_M_AXI_IC_READ_ISSUING is set to 8, since it must
be a power of two.

 With a 32-bit master, the data cache interface (M_AXI_DC) performs single word accesses, as
well as 4 word or 8 word burst accesses, depending on cache line length. Burst write accesses
are only performed when using write-back cache. With 128-bit, 256-bit, or 512-bit masters,
only single accesses are performed.

This interface can have multiple outstanding transactions, either issuing up to 2 transactions
when reading, or up to 32 transactions when writing. MicroBlaze ensures that all outstanding
writes are completed before a read is issued, since the processor must maintain an ordered
memory model but AXI has separate read/write channels without any ordering. Using up to 32
outstanding write transactions improves performance, since it allows multiple writes to proceed
without stalling the pipeline.

Word, halfword and byte writes are performed by setting the appropriate byte strobes.

Exclusive accesses can be enabled for LWX and SWX instructions.

Interface Parameters

The relationship between MicroBlaze parameter settings and AXI4 interface behavior for tool-
assigned parameters is summarized in Table 3-2.

Table 3-2: AXI Memory Mapped Interface Parameters

Interface Parameter Description

M_AXI_DP C_M_AXI_DP_PROTOCOL AXI4-Lite: Default.

AXI4: Used to allow exclusive access when
C_M_AXI_DP_EXCLUSIVE_ACCESS is 1.

M_AXI_IC C_M_AXI_IC_DATA_WIDTH 32: Default, single word accesses and burst
accesses with C_ICACHE_LINE_LEN word
busts used.

128: Used when C_ICACHE_DATA_WIDTH is
set to 1 and C_ICACHE_LINE_LEN is set to 4.
Only single accesses can occur.

256: Used when C_ICACHE_DATA_WIDTH is
set to 1 and C_ICACHE_LINE_LEN is set to 8.
Only single accesses can occur.

512: Used when C_ICACHE_DATA_WIDTH is
set to 2. Only single accesses can occur.

M_AXI_DC C_M_AXI_DC_DATA_WIDTH 32: Default, single word accesses and burst
accesses with C_DCACHE_LINE_LEN word
busts used. Write bursts are only used when
C_DCACHE_USE_WRITEBACK is set to 1.

128: Used when C_DCACHE_DATA_WIDTH is
set to 1 and C_DCACHE_LINE_LEN is set to 4.
Only single accesses can occur.

256: Used when C_DCACHE_DATA_WIDTH is
set to 1 and C_DCACHE_LINE_LEN is set to 8.
Only single accesses can occur.

512: Used when C_DCACHE_DATA_WIDTH is
set to 2. Only single accesses can occur.
MicroBlaze Processor Reference Guide www.xilinx.com 105
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
Please refer to the AMBA® AXI Protocol Specification, Version 2.0, ARM IHI 0022C document for
details.

Stream Interfaces
The MicroBlaze AXI4-Stream interfaces (M0_AXIS..M15_AXIS, S0_AXIS..S15_AXIS) are
implemented as 32-bit masters and slaves. Please refer to the AMBA®4 AXI4-Stream Protocol
Specification, Version 1.0, ARM IHI 0051A document for further details.

The Mn_AXIS_TLAST and Sn_AXIS_TLAST signals directly correspond to the equivalent
FSLn_M_Control and FSLn_S_Control signals, respectively.

Write Operation

A write to the stream interface is performed by MicroBlaze using one of the put or putd instructions.
A write operation transfers the register contents to an output AXI4 interface. The transfer is
completed in a single clock cycle for blocking mode writes (put and cput instructions) as long as the
interface is not busy. If the interface is busy, the processor stalls until it becomes available. The non-
blocking instructions (with prefix n), always complete in a single clock cycle even if the interface is
busy. If the interface was busy, the write is inhibited and the carry bit is set in the MSR.

Read Operation

A read from the stream interface is performed by MicroBlaze using one of the get or getd
instructions. A read operations transfers the contents of an input AXI4 interface to a general purpose
register. The transfer is typically completed in 2 clock cycles for blocking mode reads as long as data
is available. If data is not available, the processor stalls at this instruction until it becomes available.
In the non-blocking mode (instructions with prefix n), the transfer is completed in one or two clock
cycles irrespective of whether or not data was available. In case data was not available, the transfer
of data does not take place and the carry bit is set in the MSR.

Processor Local Bus (PLB) Interface Description
The MicroBlaze PLB interfaces are implemented as byte-enable capable 32-bit masters. Please refer
to the IBM 128-Bit Processor Local Bus Architectural Specification (v4.6) document for details.

M_AXI_IC C_INTERCONNECT_M_AXI_
IC_READ_ISSUING1

2: Default, 2 simultaneous outstanding reads.

8: Used when C_ICACHE_STREAMS is set to
1, allowing 8 simultaneous outstanding reads.

Can be set to 1, 2, 4, 8.

M_AXI_DC C_INTERCONNECT_M_AXI_
DC_READ_ISSUING1

2: Default, 2 simultaneous outstanding reads.

Can be set to 1 or 2.

M_AXI_DC C_INTERCONNECT_M_AXI_
DC_WRITE_ISSUING1

32: Default, 32 simultaneous outstanding
writes.

Can be set to 1, 2, 4, 8, 16, or 32.

1. This value can be explicitly set by the user to limit the number of simultaneous accesses accepted
by the AXI interconnect, which may lower performance but can reduce the interconnect size.

Table 3-2: AXI Memory Mapped Interface Parameters (Continued)

Interface Parameter Description
106 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Local Memory Bus (LMB) Interface Description
Local Memory Bus (LMB) Interface Description
The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a minimum
number of control signals and a simple protocol to ensure that local block RAM are accessed in a
single clock cycle. LMB signals and definitions are shown in the following table. All LMB signals
are active high.

LMB Signal Interface

Addr[0:31]

The address bus is an output from the core and indicates the memory address that is being accessed
by the current transfer. It is valid only when AS is high. In multicycle accesses (accesses requiring
more than one clock cycle to complete), Addr[0:31] is valid only in the first clock cycle of the
transfer.

Byte_Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of the data bus
contain valid data. Byte_Enable[0:3] is valid only when AS is high. In multicycle accesses
(accesses requiring more than one clock cycle to complete), Byte_Enable[0:3] is valid only in
the first clock cycle of the transfer. Valid values for Byte_Enable[0:3] are shown in the
following table:

Table 3-3: LMB Bus Signals

Signal Data Interface
Instruction
Interface

Type Description

Addr[0:31] Data_Addr[0:31] Instr_Addr[0:31] O Address bus

Byte_Enable[0:3] Byte_Enable[0:3] not used O Byte enables

Data_Write[0:31] Data_Write[0:31] not used O Write data bus

AS D_AS I_AS O Address strobe

Read_Strobe Read_Strobe IFetch O Read in progress

Write_Strobe Write_Strobe not used O Write in progress

Data_Read[0:31] Data_Read[0:31] Instr[0:31] I Read data bus

Ready DReady IReady
I Ready for next

transfer

Wait1

1. Added in LMB for MicroBlaze v8.00

DWait IWait
I Wait until accepted

transfer is ready

CE1 DCE ICE I Correctable error

UE1 DUE IUE I Uncorrectable error

Clk Clk Clk I Bus clock
MicroBlaze Processor Reference Guide www.xilinx.com 107
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
:

Data_Write[0:31]

The write data bus is an output from the core and contains the data that is written to memory. It is
valid only when AS is high. Only the byte lanes specified by Byte_Enable[0:3] contain valid
data.

AS

The address strobe is an output from the core and indicates the start of a transfer and qualifies the
address bus and the byte enables. It is high only in the first clock cycle of the transfer, after which it
goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress. This signal
goes high in the first clock cycle of the transfer, and may remain high until the clock cycle after
Ready is sampled high. If a new read transfer is directly started in the next clock cycle, then
Read_Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress. This
signal goes high in the first clock cycle of the transfer, and may remain high until the clock cycle
after Ready is sampled high. If a new write transfer is directly started in the next clock cycle, then
Write_Strobe remains high.

Data_Read[0:31]

The read data bus is an input to the core and contains data read from memory. Data_Read[0:31] is
valid on the rising edge of the clock when Ready is high.

Ready

The Ready signal is an input to the core and indicates completion of the current transfer and that the
next transfer can begin in the following clock cycle. It is sampled on the rising edge of the clock. For
reads, this signal indicates the Data_Read[0:31] bus is valid, and for writes it indicates that the
Data_Write[0:31] bus has been written to local memory.

Table 3-4: Valid Values for Byte_Enable[0:3]

Byte Lanes Used

Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]

0000

0001 x

0010 x

0100 x

1000 x

0011 x x

1100 x x

1111 x x x x
108 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Local Memory Bus (LMB) Interface Description
Wait

The Wait signal is an input to the core and indicates that the current transfer has been accepted, but
not yet completed. It is sampled on the rising edge of the clock.

CE

The CE signal is an input to the core and indicates that the current transfer had a correctable error. It
is valid on the rising edge of the clock when Ready is high. For reads, this signal indicates that an
error has been corrected on the Data_Read[0:31] bus, and for byte and halfword writes it
indicates that the corresponding data word in local memory has been corrected before writing the
new data.

UE

The UE signal is an input to the core and indicates that the current transfer had an uncorrectable
error. It is valid on the rising edge of the clock when Ready is high. For reads, this signal indicates
that the value of the Data_Read[0:31] bus is erroneous, and for byte and halfword writes it
indicates that the corresponding data word in local memory was erroneous before writing the new
data.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.

LMB Transactions
The following diagrams provide examples of LMB bus operations.

Generic Write Operations

Figure 3-2: LMB Generic Write Operation, 0 Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

BE0

D0

Don’t Care
MicroBlaze Processor Reference Guide www.xilinx.com 109
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
Generic Read Operations

Figure 3-3: LMB Generic Write Operation, N Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

BE0

D0

Don’t Care

Figure 3-4: LMB Generic Read Operation, 0 Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

D0

Don’t Care
110 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Local Memory Bus (LMB) Interface Description
Back-to-Back Write Operation

Figure 3-5: LMB Generic Read Operation, N Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

D0

Don’t Care

Figure 3-6: LMB Back-to-Back Write Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

Don’t Care

A1 A2 A3 A4

Don’t Care Don’t Care

D0

BE0 BE1 BE2 BE3 BE4

D1 D2 D3 D4
MicroBlaze Processor Reference Guide www.xilinx.com 111
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
Back-to-Back Read Operation

Back-to-Back Mixed Write/Read Operation

Figure 3-7: LMB Back-to-Back Read Operation

Figure 3-8: Back-to-Back Mixed Write/Read Operation, 0 Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

Don’t Care

A1 A2 A3 A4

Don’t Care Don’t Care

D0 D1 D2 D3 D4

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

BE0

D0

Don’t Care

A1 A2

BE2

D2

D1
112 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Local Memory Bus (LMB) Interface Description
Read and Write Data Steering
The MicroBlaze data-side bus interface performs the read steering and write steering required to
support the following transfers:

 byte, halfword, and word transfers to word devices

 byte and halfword transfers to halfword devices

 byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These types of
transfers require dynamic bus sizing and conversion cycles that are not supported by the MicroBlaze
bus interface. Data steering for read cycles is shown in Table 3-5, and data steering for write cycles
is shown in Table 3-6.

Figure 3-9: Back-to-Back Mixed Write/Read Operation, N Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0 A1 A2

Don’t Care

D0

BE0 BE2

D1

D2

Don’t Care Don’t Care

Table 3-5: Read Data Steering (Load to Register rD)

Register rD Data

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size

rD[0:7] rD[8:15] rD[16:23] rD[24:31]

11 0001 byte Byte3

10 0010 byte Byte2

01 0100 byte Byte1

00 1000 byte Byte0

10 0011 halfword Byte2 Byte3

00 1100 halfword Byte0 Byte1

00 1111 word Byte0 Byte1 Byte2 Byte3
MicroBlaze Processor Reference Guide www.xilinx.com 113
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
Note: Other masters may have more restrictive requirements for byte lane placement than those
allowed by MicroBlaze. Slave devices are typically attached “left-justified” with byte devices attached
to the most-significant byte lane, and halfword devices attached to the most significant halfword lane.
The MicroBlaze steering logic fully supports this attachment method.

Fast Simplex Link (FSL) Interface Description
The Fast Simplex Link bus provides a point-to-point communication channel between an output
FIFO and an input FIFO. For more information on the generic FSL protocol, see the Fast Simplex
Link (FSL) Bus (DS449) data-sheet in the Xilinx EDK IP Documentation.

Master FSL Signal Interface
MicroBlaze may contain up to 16 master FSL interfaces. The master signals are depicted in
Table 3-7.

Table 3-6: Write Data Steering (Store from Register rD)

Write Data Bus Bytes

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size Byte0 Byte1 Byte2 Byte3

11 0001 byte rD[24:31]

10 0010 byte rD[24:31]

01 0100 byte rD[24:31]

00 1000 byte rD[24:31]

10 0011 halfword rD[16:23] rD[24:31]

00 1100 halfword rD[16:23] rD[24:31]

00 1111 word rD[0:7] rD[8:15] rD[16:23] rD[24:31]

Table 3-7: Master FSL Signals

Signal Name Description VHDL Type Direction

FSLn_M_Clk Clock std_logic input

FSLn_M_Write Write enable signal indicating
that data is being written to the
output FSL

std_logic
output

FSLn_M_Data Data value written to the output
FSL

std_logic_vector
output

FSLn_M_Control Control bit value written to the
output FSL

std_logic
output

FSLn_M_Full Full Bit indicating output FSL
FIFO is full when set

std_logic
input
114 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Fast Simplex Link (FSL) Interface Description
Slave FSL Signal Interface
MicroBlaze may contain up to 16 slave FSL interfaces. The slave FSL interface signals are depicted
in Table 3-8.

FSL Transactions

FSL BUS Write Operation

A write to the FSL bus is performed by MicroBlaze using one of the put or putd instructions. A write
operation transfers the register contents to an output FSL bus. The transfer is completed in a single
clock cycle for blocking mode writes to the FSL (put and cput instructions) as long as the FSL FIFO
does not become full. If the FSL FIFO is full, the processor stalls until the FSL full flag is lowered.
The non-blocking instructions (with prefix n), always complete in a single clock cycle even if the
FSL was full. If the FSL was full, the write is inhibited and the carry bit is set in the MSR.

FSL BUS Read Operation

A read from the FSL bus is performed by MicroBlaze using one of the get or getd instructions. A
read operations transfers the contents of an input FSL to a general purpose register. The transfer is
typically completed in 2 clock cycles for blocking mode reads from the FSL as long as data exists in
the FSL FIFO. If the FSL FIFO is empty, the processor stalls at this instruction until the FSL exists
flag is set. In the non-blocking mode (instructions with prefix n), the transfer is completed in one or
two clock cycles irrespective of whether or not the FSL was empty. In the case the FSL was empty,
the transfer of data does not take place and the carry bit is set in the MSR.

Direct FSL Connections
A direct FSL connection can be used to avoid the need for the FSL bus. This can be useful in case
no buffering is needed between the two connected IP cores, since the FSL bus FIFO is not included
with a direct connection. No buffering reduces the communication latency and required
implementation resources.

Each of the MicroBlaze FSL interfaces can either use a direct FSL connection or an FSL bus.

A MicroBlaze DWFSL interface is the initiator on a direct FSL connection, which can only be
connected to a DWFSL target. The DWFSL initiator and target have exactly the same signal names,

Table 3-8: Slave FSL Signals

Signal Name Description VHDL Type Direction

FSLn_S_Clk Clock std_logic input

FSLn_S_Read Read acknowledge signal
indicating that data has been
read from the input FSL

std_logic output

FSLn_S_Data Data value currently available at
the top of the input FSL

std_logic_vector input

FSLn_S_Control Control Bit value currently
available at the top of the input
FSL

std_logic input

FSLn_S_Exists Flag indicating that data exists
in the input FSL

std_logic input
MicroBlaze Processor Reference Guide www.xilinx.com 115
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
identical to the MFSL signals, depicted in Table 3-7. MicroBlaze uses the DWFSL interface to write
data to the target with one of the put or putd instructions.

A MicroBlaze DRFSL interface is the target on a direct FSL connection, which can only be
connected to a DRFSL initiator. The DRFSL initiator and target have exactly the same signal names,
identical to the SFSL signals, depicted in Table 3-8. MicroBlaze uses the DRFSL interface to read
data from the initiator with one of the get or getd instructions.

The Xilinx CacheLink (XCL) interface is implemented with direct FSL connections.

Xilinx CacheLink (XCL) Interface Description
Xilinx CacheLink (XCL) is a high performance solution for external memory accesses. The
MicroBlaze CacheLink interface is designed to connect directly to a memory controller with
integrated FSL buffers, for example, the MPMC. This method has the lowest latency and minimal
number of instantiations (see Figure 3-10).

Figure 3-10: CacheLink Connection with Integrated FSL Buffers
 (Only Instruction Cache Used in this Example)

The interface is only available on MicroBlaze when caches are enabled. It is legal to use a
CacheLink cache on the instruction side or the data side without caching the other.

How memory locations are accessed depend on the parameter C_ICACHE_ALWAYS_USED for
the instruction cache and the parameter C_DCACHE_ALWAYS_USED for the data cache. If the
parameter is 1, the cached memory range is always accessed via the CacheLink. If the parameter is
0, the cached memory range is accessed over AXI4 or PLB whenever the caches are software
disabled (that is, MSR[DCE]=0 or MSR[ICE]=0).

Memory locations outside the cacheable range are accessed over AXI, PLB or LMB.

The CacheLink cache controllers handle 4 or 8-word cache lines, either using critical word first or
linear fetch depending on the selected protocol. At the same time the separation from the AXI4 or
PLB bus reduces contention for non-cached memory accesses.

BEGIN microblaze
...
BUS_INTERFACE IXCL = myIXCL
...

END

BEGIN mpmc
...
BUS_INTERFACE XCL0 = myIXCL
...

END

Memory

MicroBlaze

Controller

F
S

L

F
S

L

Schematic Example MHS code
116 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Xilinx CacheLink (XCL) Interface Description
CacheLink Signal Interface
The CacheLink signals on MicroBlaze are listed in Table 3-9.

Table 3-9: MicroBlaze Cache Link Signals

Signal Name Description VHDL Type Direction

ICACHE_FSL_IN_Clk Clock output to I-side return
read data FSL

std_logic output

ICACHE_FSL_IN_Read Read signal to I-side return
read data FSL.

std_logic output

ICACHE_FSL_IN_Data Read data from I-side return
read data FSL

std_logic_
vector (0 to 31)

input

ICACHE_FSL_IN_Control FSL control-bit from I-side
return read data FSL.
Reserved for future use

std_logic input

ICACHE_FSL_IN_Exists More read data exists in I-side
return FSL

std_logic input

ICACHE_FSL_OUT_Clk Clock output to I-side read
access FSL

std_logic output

ICACHE_FSL_OUT_Write Write new cache miss access
request to I-side read access
FSL

std_logic output

ICACHE_FSL_OUT_Data Cache miss access (=address)
to I-side read access FSL

std_logic_
vector (0 to 31)

output

ICACHE_FSL_OUT_Control FSL control-bit to I-side read
access FSL. Reserved for
future use

std_logic output

ICACHE_FSL_OUT_Full FSL access buffer for I-side
read accesses is full

std_logic input

DCACHE_FSL_IN_Clk Clock output to D-side return
read data FSL

std_logic output

DCACHE_FSL_IN_Read Read signal to D-side return
read data FSL

std_logic output

DCACHE_FSL_IN_Data Read data from D-side return
read data FSL

std_logic_
vector (0 to 31)

input

DCACHE_FSL_IN_Control FSL control bit from D-side
return read data FSL

std_logic input

DCACHE_FSL_IN_Exists More read data exists in D-
side return FSL

std_logic input

DCACHE_FSL_OUT_Clk Clock output to D-side read
access FSL

std_logic output

DCACHE_FSL_OUT_Write Write new cache miss access
request to D-side read access
FSL

std_logic output
MicroBlaze Processor Reference Guide www.xilinx.com 117
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
CacheLink Transactions
All individual CacheLink accesses follow the FSL FIFO based transaction protocol:

 Access information is encoded over the FSL data and control signals (e.g.
DCACHE_FSL_OUT_Data, DCACHE_FSL_OUT_Control, ICACHE_FSL_IN_Data,
and ICACHE_FSL_IN_Control)

 Information is sent (stored) by raising the write enable signal (e.g.
DCACHE_FSL_OUT_Write)

 The sender is only allowed to write if the full signal from the receiver is inactive (e.g.
DCACHE_FSL_OUT_Full = 0). The full signal is not used by the instruction cache
controller.

 The use of ICACHE_FSL_IN_Read and DCACHE_FSL_IN_Read depends on the
selected interface protocol:

 With the IXCL and DXCL protocol, information is received (loaded) by raising the read
signal. The signal is low, except when the sender signals that new data exists.

 With the IXCL2 and DXCL2 protocol, lowering the read signal indicates that the receiver
is not able to accept new data. New data is only read when the read signal is high, and the
sender signals that data exists. Once a burst read has started, the read signal is not lowered.

 The receiver is only allowed to read as long as the sender signals that new data exists (e.g.
ICACHE_FSL_IN_Exists = 1)

For details on the generic FSL protocol, please see the Fast Simplex Link (FSL) Bus (DS449) data-
sheet in the Xilinx EDK IP Documentation.

The CacheLink solution uses one incoming (slave) and one outgoing (master) FSL per cache
controller. The outgoing FSL is used to send access requests, while the incoming FSL is used for
receiving the requested cache lines. CacheLink also uses a specific encoding of the transaction
information over the FSL data and control signals.

The cache lines used for reads in the CacheLink protocol are 4 or 8 words long. Each cache line is
either fetched with the critical word first, or in linear order, depending on the selected interface
protocol.

 Critical word first is used by the IXCL and DXCL protocol, selected when
C_ICACHE_INTERFACE = 0 (IXCL) and C_DCACHE_INTERFACE = 0 (DXCL),

DCACHE_FSL_OUT_Data Cache miss access (read
address or write address +
write data + byte write enable
+ burst write encoding) to D-
side read access FSL

std_logic_
vector (0 to 31)

output

DCACHE_FSL_OUT_Control FSL control-bit to D-side read
access FSL. Used with
address bits [30 to 31] for
read/write, byte enable and
burst write encoding.

std_logic output

DCACHE_FSL_OUT_Full FSL access buffer for D-side
read accesses is full

std_logic input

Table 3-9: MicroBlaze Cache Link Signals

Signal Name Description VHDL Type Direction
118 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Xilinx CacheLink (XCL) Interface Description
respectively. Each cache line is expected to start with the critical word first (that is, if an access
to address 0x348 is a miss with a 4 word cache line, then the returned cache line should have
the following address sequence: 0x348, 0x34c, 0x340, 0x344). The cache controller forwards
the first word to the execution unit as well as stores it in the cache memory. This allows
execution to resume as soon as the first word is back. The cache controller then follows
through by filling up the cache line with the remaining 3 or 7 words as they are received.

 Linear fetch is used by the IXCL2 and DXCL2 protocol, selected when
C_ICACHE_INTERFACE = 1 (IXCL2) and C_DCACHE_INTERFACE = 1 (DXCL2),
respectively. The address output on the CacheLink is then aligned to the cache line size (that is,
if an access to address 0x348 is a miss with a 4 word cache line, then the address output on the
CacheLink is 0x340). The cache controller stores data in the cache memory, and forwards the
requested word to the execution unit when it is available.

When the parameter C_DCACHE_USE_WRITEBACK is set to 1, write operations can store an
entire cache line using burst write, as well as single-words. Each cache line is always stored in linear
order, and the address output on the CacheLink is aligned to the cache line size. When the parameter
C_DCACHE_USE_WRITEBACK is cleared to 0, all write operations on the CacheLink are single-
word. C_DCACHE_INTERFACE must be set to 1 (DXCL2) when write-back is used, since burst
write is only available with the DXCL2 protocol.

Instruction Cache Read Miss

On a read miss the cache controller performs the following sequence:

1. Write the word aligned (1) or cache line aligned missed address to ICACHE_FSL_OUT_Data,
with the control bit set low (ICACHE_FSL_OUT_Control = 0) to indicate a read access

2. Wait until ICACHE_FSL_IN_Exists goes high to indicate that data is available

Note: There must be at least one clock cycle before ICACHE_FSL_IN_Exists goes high (that is,
at least one wait state must be used).

With the IXCL protocol (critical word first):

3. Store the word from ICACHE_FSL_IN_Data to the cache

4. Forward the critical word to the execution unit in order to resume execution

5. Repeat 3 and 4 for the subsequent 3 or 7 words in the cache line

With the IXCL2 protocol (linear fetch):

3. Store words from ICACHE_FSL_IN_Data to the cache

4. Forward the relevant word to the execution unit in order to resume execution

5. Store remaining words from ICACHE_FSL_IN_Data to the cache

Data Cache Read Miss

On a read miss the cache controller will perform the following sequence:

1. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low

2. Write the word aligned1 or cache line aligned missed address to DCACHE_FSL_OUT_Data,
with the control bit set low (DCACHE_FSL_OUT_Control = 0) to indicate a read access

1. Byte and halfword read misses are naturally expected to return complete words, the cache controller then provides the
execution unit with the correct bytes.
MicroBlaze Processor Reference Guide www.xilinx.com 119
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
3. Wait until DCACHE_FSL_IN_Exists goes high to indicate that data is available

Note: There must be at least one clock cycle before DCACHE_FSL_IN_Exists goes high (that is,
at least one wait state must be used).

With the DXCL protocol (critical word first):

4. Store the word from DCACHE_FSL_IN_Data to the cache

5. Forward the critical word to the execution unit in order to resume execution

6. Repeat 4 and 5 for the subsequent 3 or 7 words in the cache line

With the DXCL2 protocol (linear fetch):

4. Store words from DCACHE_FSL_IN_Data to the cache

5. Forward the requested word to the execution unit in order to resume execution

6. Store remaining words from DCACHE_FSL_IN_Data to the cache

Data Cache Write

When C_DCACHE_INTERFACE is set to 1 (DXCL2), the CacheLink can either do burst write or
single-word write.

A burst write is used when C_DCACHE_USE_WRITEBACK is set to 1 and an entire cache line is
valid. There are two occasions when an entire cache line becomes valid:

 If a cache miss occurs for a load instruction or byte/halfword store instruction, which causes
the entire cache line to be read into the cache with a burst read.

 All words in the cache line have been written with word store instructions.

Note that writes to the data cache always are write-through when C_DCACHE_USE_WRITEBACK
is cleared to 0, and thus there is a write over the CacheLink regardless of whether there was a hit or
miss in the cache.

With the DXCL2 protocol, on a burst cache line write, the cache controller performs the following
sequence:

1. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low

2. Write the cache aligned address to DCACHE_FSL_OUT_Data, with the control bit set high
(DCACHE_FSL_OUT_Control = 1) to indicate a write access. The two least-significant bits
(30:31) of the address are used to encode burst access: 0b10=burst. To separate a burst access
from a single byte-write, the control bit for the first data word in step 4 is low for a burst access
(DCACHE_FSL_OUT_Control = 0).

3. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low

4. Write the data to be stored to DCACHE_FSL_OUT_Data. The control bit is low
(DCACHE_FSL_OUT_Control = 0) for a burst access.

5. Repeat 3 and 4 for the subsequent words in the cache line.

With either the DXCL or DXCL2 protocol, on a single-word write, the cache controller performs the
following sequence:

1. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low

2. Write the missed address to DCACHE_FSL_OUT_Data, with the control bit set high
(DCACHE_FSL_OUT_Control = 1) to indicate a write access. The two least-significant bits
(30:31) of the address are used to encode byte and half-word enables: 0b00=byte0, 0b01=byte1
or halfword0, 0x10=byte2, and 0x11=byte3 or halfword1. The selection of half-word or byte
access is based on the control bit for the data word in step 4.

3. If DCACHE_FSL_OUT_Full = 1 then stall until it goes low
120 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Xilinx CacheLink (XCL) Interface Description
4. Write the data to be stored to DCACHE_FSL_OUT_Data. For byte and halfword accesses the
data is mirrored onto byte-lanes. Mirroring outputs the byte or halfword to be written on all four
byte-lanes or on both halfword-lanes, respectively. The control bit should be low
(DCACHE_FSL_OUT_Control = 0) for a word or halfword access, and high for a byte access
to separate it from a burst access. Word or halfword accesses can be distinguished by the least
significant bit of the address (0=word and 1=halfword).
MicroBlaze Processor Reference Guide www.xilinx.com 121
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
Lockstep Interface Description
The lockstep interface on MicroBlaze is designed to connect a master and one or more slave
MicroBlaze instances. The lockstep signals on MicroBlaze are listed in Table 3-10.

The comparison signals provided by Lockstep_Out are listed in Table 3-11.

Table 3-10: MicroBlaze Lockstep Signals

Signal Name Description VHDL Type Direction

Lockstep_Master_Out Output with signals going from
master to slave MicroBlaze. Not
connected on slaves.

std_logic output

Lockstep_Slave_In Input with signals coming from
master to slave MicroBlaze. Not
connected on master.

std_logic input

Lockstep_Out Output with all comparison
signals from both master and
slaves.

std_logic output

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name Bus Index Range VHDL Type

MB_Halted 0 std_logic

MB_Error 1 std_logic

IFetch_POS 2 std_logic

I_AS_POS 3 std_logic

Instr_Addr 4 to 35 std_logic_vector

Data_Addr 36 to 67 std_logic_vector

Data_Write 68 to 99 std_logic_vector

D_AS 100 std_logic

Read_Strobe 101 std_logic

Write_Strobe 102 std_logic

Byte_Enable 103 to 106 std_logic_vector

IPLB_M_ABort 107 std_logic

IPLB_M_busLock 108 std_logic

IPLB_M_lockErr 109 std_logic

IPLB_M_rdBurst 110 std_logic

IPLB_M_request 111 std_logic

IPLB_M_RNW 112 std_logic

IPLB_M_wrBurst 113 std_logic

IPLB_M_MSize 114 to 115 std_logic_vector

IPLB_M_priority 116 to 117 std_logic_vector

IPLB_M_ABus 118 to 149 std_logic_vector

IPLB_M_UABus 150 to 181 std_logic_vector

IPLB_M_BE1 182 to 197 std_logic_vector
122 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Lockstep Interface Description
IPLB_M_size 198 to 201 std_logic_vector

IPLB_M_TAttribute 202 to 217 std_logic_vector

IPLB_M_type 218 to 220 std_logic_vector

IPLB_M_wrDBus1 221 to 348 std_logic_vector

DPLB_M_ABort 349 std_logic

DPLB_M_busLock 350 std_logic

DPLB_M_lockErr 351 std_logic

DPLB_M_rdBurst 352 std_logic

DPLB_M_request 353 std_logic

DPLB_M_RNW 354 std_logic

DPLB_M_wrBurst 355 std_logic

DPLB_M_ABus 356 to 387 std_logic_vector

DPLB_M_UABus 388 to 419 std_logic_vector

DPLB_M_BE1 420 to 435 std_logic_vector

DPLB_M_MSize 436 to 437 std_logic_vector

DPLB_M_priority 438 to 439 std_logic_vector

DPLB_M_size 440 to 443 std_logic_vector

DPLB_M_TAttribute 444 to 459 std_logic_vector

DPLB_M_type 460 to 462 std_logic_vector

DPLB_M_wrDBus1 463 to 590 std_logic_vector

ICACHE_FSL_IN_Clk 591 std_logic

ICACHE_FSL_IN_Read 592 std_logic

ICACHE_FSL_OUT_Clk 593 std_logic

ICACHE_FSL_OUT_Write 594 std_logic

ICACHE_FSL_OUT_Data 595 to 626 std_logic_vector

ICACHE_FSL_OUT_Control 627 std_logic

DCACHE_FSL_IN_Clk 628 std_logic

DCACHE_FSL_IN_Read 629 std_logic

DCACHE_FSL_OUT_Clk 630 std_logic

DCACHE_FSL_OUT_Write 631 std_logic

DCACHE_FSL_OUT_Data 632 to 663 std_logic_vector

DCACHE_FSL_OUT_Control 664 std_logic

M_AXI_IP_AWID 665 std_logic

M_AXI_IP_AWADDR 666 to 697 std_logic_vector

M_AXI_IP_AWLEN 698 to 705 std_logic_vector

M_AXI_IP_AWSIZE 706 to 708 std_logic_vector

M_AXI_IP_AWBURST 709 to 710 std_logic_vector

M_AXI_IP_AWLOCK 711 std_logic

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 123
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_IP_AWCACHE 712 to 715 std_logic_vector

M_AXI_IP_AWPROT 716 to 718 std_logic_vector

M_AXI_IP_AWQOS 719 to 722 std_logic_vector

M_AXI_IP_AWVALID 723 std_logic

M_AXI_IP_WDATA 724 to 755 std_logic_vector

M_AXI_IP_WSTRB 756 to 759 std_logic_vector

M_AXI_IP_WLAST 760 std_logic

M_AXI_IP_WVALID 761 std_logic

M_AXI_IP_BREADY 762 std_logic

M_AXI_IP_ARID 763 std_logic

M_AXI_IP_ARADDR 764 to 795 std_logic_vector

M_AXI_IP_ARLEN 796 to 803 std_logic_vector

M_AXI_IP_ARSIZE 804 to 806 std_logic_vector

M_AXI_IP_ARBURST 807 to 808 std_logic_vector

M_AXI_IP_ARLOCK 809 std_logic

M_AXI_IP_ARCACHE 810 to 813 std_logic_vector

M_AXI_IP_ARPROT 814 to 816 std_logic_vector

M_AXI_IP_ARQOS 817 to 820 std_logic_vector

M_AXI_IP_ARVALID 821 std_logic

M_AXI_IP_RREADY 822 std_logic

M_AXI_DP_AWID 823 std_logic

M_AXI_DP_AWADDR 824 to 855 std_logic_vector

M_AXI_DP_AWLEN 856 to 863 std_logic_vector

M_AXI_DP_AWSIZE 864 to 866 std_logic_vector

M_AXI_DP_AWBURST 867 to 868 std_logic_vector

M_AXI_DP_AWLOCK 869 std_logic

M_AXI_DP_AWCACHE 870 to 873 std_logic_vector

M_AXI_DP_AWPROT 874 to 876 std_logic_vector

M_AXI_DP_AWQOS 877 to 880 std_logic_vector

M_AXI_DP_AWVALID 881 std_logic

M_AXI_DP_WDATA 882 to 913 std_logic_vector

M_AXI_DP_WSTRB 914 to 917 std_logic_vector

M_AXI_DP_WLAST 918 std_logic

M_AXI_DP_WVALID 919 std_logic

M_AXI_DP_BREADY 920 std_logic

M_AXI_DP_ARID 921 std_logic

M_AXI_DP_ARADDR 922 to 953 std_logic_vector

M_AXI_DP_ARLEN 954 to 961 std_logic_vector

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name Bus Index Range VHDL Type
124 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Lockstep Interface Description
M_AXI_DP_ARSIZE 962 to 964 std_logic_vector

M_AXI_DP_ARBURST 965 to 966 std_logic_vector

M_AXI_DP_ARLOCK 967 std_logic

M_AXI_DP_ARCACHE 968 to 971 std_logic_vector

M_AXI_DP_ARPROT 972 to 974 std_logic_vector

M_AXI_DP_ARQOS 975 to 978 std_logic_vector

M_AXI_DP_ARVALID 979 std_logic

M_AXI_DP_RREADY 980 std_logic

FSLn_S_Clk 981 + n * 37 std_logic

FSLn_S_Read 982 + n * 37 std_logic

FSLn_M_Clk 983 + n * 37 std_logic

FSLn_M_Write 984 + n * 37 std_logic

FSLn_M_Data 985 + n * 37 to 1016 + n * 37 std_logic_vector

FSLn_M_Control 1017 + n * 37 std_logic

Mn_AXIS_TLAST 1573 + n * 35 std_logic

Mn_AXIS_TDATA 1574 + n * 35 to 1606 + n * 35 std_logic_vector

Mn_AXIS_TVALID 1607 + n * 35 std_logic

Sn_AXIS_TREADY 1608 + n * 35 std_logic

M_AXI_IC_AWID 2133 std_logic

M_AXI_IC_AWADDR 2134 to 2165 std_logic_vector

M_AXI_IC_AWLEN 2166 to 2173 std_logic_vector

M_AXI_IC_AWSIZE 2174 to 2176 std_logic_vector

M_AXI_IC_AWBURST 2177 to 2178 std_logic_vector

M_AXI_IC_AWLOCK 2179 std_logic

M_AXI_IC_AWCACHE 2180 to 2183 std_logic_vector

M_AXI_IC_AWPROT 2184 to 2186 std_logic_vector

M_AXI_IC_AWQOS 2187 to 2190 std_logic_vector

M_AXI_IC_AWVALID 2191 std_logic

M_AXI_IC_AWUSER 2192 to 2196 std_logic_vector

M_AXI_IC_WDATA1 2197 to 2708 std_logic_vector

M_AXI_IC_WSTRB1 2709 to 2772 std_logic_vector

M_AXI_IC_WLAST 2773 std_logic

M_AXI_IC_WVALID 2774 std_logic

M_AXI_IC_WUSER 2775 std_logic

M_AXI_IC_BREADY 2776 std_logic

M_AXI_IC_ARID 2777 std_logic_vector

M_AXI_IC_ARADDR 2778 to 2809 std_logic_vector

M_AXI_IC_ARLEN 2810 to 2817 std_logic_vector

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 125
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_IC_ARSIZE 2818 to 2820 std_logic_vector

M_AXI_IC_ARBURST 2821 to 2822 std_logic_vector

M_AXI_IC_ARLOCK 2823 std_logic

M_AXI_IC_ARCACHE 2824 to 2827 std_logic_vector

M_AXI_IC_ARPROT 2828 to 2830 std_logic_vector

M_AXI_IC_ARQOS 2831 to 2834 std_logic_vector

M_AXI_IC_ARVALID 2835 std_logic

M_AXI_IC_ARUSER 2836 to 2840 std_logic_vector

M_AXI_IC_RREADY 2841 std_logic

M_AXI_DC_AWID 2842 std_logic

M_AXI_DC_AWADDR 2843 to 2874 std_logic_vector

M_AXI_DC_AWLEN 2875 to 2882 std_logic_vector

M_AXI_DC_AWSIZE 2883 to 2885 std_logic_vector

M_AXI_DC_AWBURST 2886 to 2887 std_logic_vector

M_AXI_DC_AWLOCK 2888 std_logic

M_AXI_DC_AWCACHE 2889 to 2892 std_logic_vector

M_AXI_DC_AWPROT 2893 to 2895 std_logic_vector

M_AXI_DC_AWQOS 2896 to 2899 std_logic_vector

M_AXI_DC_AWVALID 2900 std_logic

M_AXI_DC_AWUSER 2901 to 2905 std_logic_vector

M_AXI_DC_WDATA1 2906 to 3417 std_logic_vector

M_AXI_DC_WSTRB1 3418 to 3481 std_logic_vector

M_AXI_DC_WLAST 3482 std_logic

M_AXI_DC_WVALID 3483 std_logic

M_AXI_DC_WUSER 3484 std_logic

M_AXI_DC_BREADY 3485 std_logic

M_AXI_DC_ARID 3486 std_logic

M_AXI_DC_ARADDR 3487 to 3518 std_logic_vector

M_AXI_DC_ARLEN 3519 to 3526 std_logic_vector

M_AXI_DC_ARSIZE 3527 to 3529 std_logic_vector

M_AXI_DC_ARBURST 3530 to 3531 std_logic_vector

M_AXI_DC_ARLOCK 3532 std_logic

M_AXI_DC_ARCACHE 3533 to 3536 std_logic_vector

M_AXI_DC_ARPROT 3537 to 3539 std_logic_vector

M_AXI_DC_ARQOS 3540 to 3543 std_logic_vector

M_AXI_DC_ARVALID 3544 std_logic

M_AXI_DC_ARUSER 3545 to 3549 std_logic_vector

M_AXI_DC_RREADY 3550 std_logic

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name Bus Index Range VHDL Type
126 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Lockstep Interface Description
Trace_Instruction 3551 to 3582 std_logic_vector

Trace_Valid_Instr 3583 std_logic

Trace_PC 3584 to 3615 std_logic_vector

Trace_Reg_Write 3616 std_logic

Trace_Reg_Addr 3617 to 3621 std_logic_vector

Trace_MSR_Reg 3622 to 3636 std_logic_vector

Trace_PID_Reg 3637 to 3644 std_logic_vector

Trace_New_Reg_Value 3645 to 3676 std_logic_vector

Trace_Exception_Taken 3677 std_logic

Trace_Exception_Kind 3678 to 3682 std_logic_vector

Trace_Jump_Taken 3683 std_logic

Trace_Delay_Slot 3684 std_logic

Trace_Data_Address 3685 to 3716 std_logic_vector

Trace_Data_Write_Value 3717 to 3748 std_logic_vector

Trace_Data_Byte_Enable 3749 to 3752 std_logic_vector

Trace_Data_Access 3753 std_logic

Trace_Data_Read 3754 std_logic

Trace_Data_Write 3755 std_logic

Trace_DCache_Req 3756 std_logic

Trace_DCache_Hit 3757 std_logic

Trace_DCache_Rdy 3758 std_logic

Trace_DCache_Read 3759 std_logic

Trace_ICache_Req 3760 std_logic

Trace_ICache_Hit 3761 std_logic

Trace_ICache_Rdy 3762 std_logic

Trace_OF_PipeRun 3763 std_logic

Trace_EX_PipeRun 3764 std_logic

Trace_MEM_PipeRun 3765 std_logic

Trace_MB_Halted 3766 std_logic

Trace_Jump_Hit 3767 std_logic

Reserved for future use 3768 to 4095

1. This field accommodates the maximum signal width. The part used in the comparison extends from the lowest
numbered bit.to the actual signal width.

Table 3-11: MicroBlaze Lockstep Comparison Signals

Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 127
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
Debug Interface Description
The debug interface on MicroBlaze is designed to work with the Xilinx Microprocessor Debug
Module (MDM) IP core. The MDM is controlled by the Xilinx Microprocessor Debugger (XMD)
through the JTAG port of the FPGA. The MDM can control multiple MicroBlaze processors at the
same time. The debug signals are grouped in the DEBUG bus. The debug signals on MicroBlaze are
listed in Table 3-12.

Trace Interface Description
The MicroBlaze core exports a number of internal signals for trace purposes. This signal interface is
not standardized and new revisions of the processor may not be backward compatible for signal
selection or functionality. It is recommended that you not design custom logic for these signals, but
rather to use them via Xilinx provided analysis IP. The trace signals are grouped in the TRACE bus.
The current set of trace signals were last updated for MicroBlaze v7.30 and are listed in Table 3-13.
The Trace exception types are listed in Table 3-14. All unused Trace exception types are reserved.

Table 3-12: MicroBlaze Debug Signals

Signal Name Description VHDL Type Direction

Dbg_Clk JTAG clock from MDM std_logic input

Dbg_TDI JTAG TDI from MDM std_logic input

Dbg_TDO JTAG TDO to MDM std_logic output

Dbg_Reg_En Debug register enable from
MDM

std_logic input

Dbg_Shift1

1. Updated for MicroBlaze v7.00: Dbg_Shift added and Debug_Rst included in DEBUG bus

JTAG BSCAN shift signal from
MDM

std_logic input

Dbg_Capture JTAG BSCAN capture signal
from MDM

std_logic input

Dbg_Update JTAG BSCAN update signal
from MDM

std_logic input

Debug_Rst1 Reset signal from MDM, active
high. Should be held for at least
1 Clk clock cycle.

std_logic input

Table 3-13: MicroBlaze Trace Signals

Signal Name Description VHDL Type Direction

Trace_Valid_Instr Valid instruction on trace port. std_logic output

Trace_Instruction 1 Instruction code std_logic_vector (0 to 31) output

Trace_PC 1 Program counter std_logic_vector (0 to 31) output

Trace_Reg_Write 1 Instruction writes to the register file std_logic output

Trace_Reg_Addr 1 Destination register address std_logic_vector (0 to 4) output

Trace_MSR_Reg1 Machine status register std_logic_vector (0 to 14)2 output

Trace_PID_Reg1,2 Process identifier register std_logic_vector (0 to 7) output
128 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Trace Interface Description
Trace_New_Reg_Value1 Destination register update value std_logic_vector (0 to 31) output

Trace_Exception_Taken1 Instruction result in taken exception std_logic output

Trace_Exception_Kind1,3 Exception type. The description for the
exception type is documented below.

std_logic_vector (0 to 4)2 output

Trace_Jump_Taken1 Branch instruction evaluated true, i.e taken std_logic output

Trace_Jump_Hit1,4,6 Branch Target Cache hit std_logic output

Trace_Delay_Slot1 Instruction is in delay slot of a taken branch std_logic output

Trace_Data_Access1 Valid D-side memory access std_logic output

Trace_Data_Address1 Address for D-side memory access std_logic_vector (0 to 31) output

Trace_Data_Write_Value1 Value for D-side memory write access std_logic_vector (0 to 31) output

Trace_Data_Byte_Enable1 Byte enables for D-side memory access std_logic_vector (0 to 3) output

Trace_Data_Read1 D-side memory access is a read std_logic output

Trace_Data_Write1 D-side memory access is a write std_logic output

Trace_DCache_Req Data memory address is within D-Cache
range

std_logic output

Trace_DCache_Hit Data memory address is present in D-Cache std_logic output

Trace_DCache_Rdy Data memory address is within D-Cache
range and the access is completed

std_logic output

Trace_DCache_Read5 The D-Cache request is a read std_logic output

Trace_ICache_Req Instruction memory address is within
I-Cache range

std_logic output

Trace_ICache_Hit Instruction memory address is present in
I-Cache

std_logic output

Trace_ICache_Rdy Instruction memory address is within
I-Cache range and the access is completed

std_logic output

Trace_OF_PipeRun Pipeline advance for Decode stage std_logic output

Trace_EX_PipeRun6 Pipeline advance for Execution stage std_logic output

Trace_MEM_PipeRun6 Pipeline advance for Memory stage std_logic output

Trace_MB_Halted2 Pipeline is halted by debug std_logic output

1. Valid only when Trace_Valid_Instr = 1
2. Updated for MicroBlaze v7.00: 4 bits added to Trace_MSR_Reg, Trace_PID_Reg added, Trace_MB_Halted added, and 1 bit added to

Trace_Exception Kind
3. Valid only when Trace_Exception_Taken = 1
4. Updated for MicroBlaze v7.30: Trace_DCache_Rdy, Trace_DCache_Read, Trace_ICache_Rdy, and Trace_Jump_Hit added
5. Valid only when Trace_DCache_Req = 1
6. Not used with area optimization feature

Table 3-13: MicroBlaze Trace Signals

Signal Name Description VHDL Type Direction
MicroBlaze Processor Reference Guide www.xilinx.com 129
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
Table 3-14: Type of Trace Exception

Trace_Exception_Kind [0:4] Description

00000 Stream exception1

1. Added for MicroBlaze v7.00

00001 Unaligned exception

00010 Illegal Opcode exception

00011 Instruction Bus exception

00100 Data Bus exception

00101 Divide exception

00110 FPU exception

00111 Privileged instruction exception1

01010 Interrupt

01011 External non maskable break

01100 External maskable break

10000 Data storage exception1

10001 Instruction storage exception1

10010 Data TLB miss exception1

10011 Instruction TLB miss exception1
130 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze Core Configurability
MicroBlaze Core Configurability
The MicroBlaze core has been developed to support a high degree of user configurability. This
allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done via parameters that typically enable, size, or select certain processor features.
For example, the instruction cache is enabled by setting the C_USE_ICACHE parameter. The size of
the instruction cache, and the cacheable memory range, are all configurable using:
C_CACHE_BYTE_SIZE, C_ICACHE_BASEADDR, and C_ICACHE_HIGHADDR respectively.

Parameters valid for MicroBlaze v8.00 are listed in Table 3-15. Not all of these are recognized by
older versions of MicroBlaze; however, the configurability is fully backward compatibility.

Note: Shaded rows indicate that the parameter has a fixed value and cannot be modified.

Table 3-15: MPD Parameters

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type

C_FAMILY Target Family artix7
artix7l
aspartan3
aspartan3a
aspartan3adsp
aspartan3e
aspartan6
kintex7
kintex7l
qspartan6
qspartan6l
spartan3
spartan3a
spartan3adsp
spartan3an
spartan3e
spartan6
spartan6l
qrvirtex4
qrvirtex5
qvirtex4
qvirtex5
qvirtex6
virtex4
virtex5
virtex6
virtex6l
virtex7
virtex7l
zynq
zynql

virtex5 yes string

C_DATA_SIZE Data Size 32 32 NA integer
MicroBlaze Processor Reference Guide www.xilinx.com 131
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
C_DYNAMIC_BUS_SIZING Legacy 1 1 NA integer

C_SCO Xilinx internal 0 0 NA integer

C_AREA_OPTIMIZED Select implementation to
optimize area with lower
instruction throughput

0, 1 0 integer

C_OPTIMIZATION Reserved for future use 0 0 NA integer

C_INTERCONNECT Select interconnect

1 = PLBv46
2 = AXI4

1, 2 1 integer

C_ENDIANNESS Select endianness
0 = Big Endian
1 = Little Endian

0, 1 0 yes integer

C_FAULT_TOLERANT Implement fault tolerance 0, 1 0 integer

C_ECC_USE_CE_EXCEPTION Generate exception for
correctible ECC error

0,1 0 integer

C_LOCKSTEP_SLAVE Lockstep Slave 0, 1 0 integer

C_AVOID_PRIMITIVES Disallow FPGA primitives
0 = None
1 = SRL
2 = LUTRAM
3 = Both

0, 1, 2, 3 0 integer

C_PVR Processor version register
mode selection

0 = None
1 = Basic
2 = Full

0, 1, 2 0

integer

C_PVR_USER1 Processor version register
USER1 constant

0x00-0xff 0x00
std_logic_vector
(0 to 7)

C_PVR_USER2 Processor version register
USER2 constant

0x00000000-
0xffffffff

0x0000
0000

std_logic_vector
(0 to 31)

C_RESET_MSR Reset value for MSR
register

0x00, 0x20,
0x80, 0xa0

0x00
std_logic_vector

C_INSTANCE Instance Name Any instance
name

micro
blaze

yes string

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
132 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze Core Configurability
C_D_PLB Data side PLB interface 0, 1 0 yes integer

C_D_AXI Data side AXI interface 0, 1 0 yes integer

C_D_LMB Data side LMB interface 0, 1 1 yes integer

C_I_PLB Instruction side PLB
interface

0, 1 0
yes integer

C_I_AXI Instruction side AXI
interface

0, 1 0
yes integer

C_I_LMB Instruction side LMB
interface

0, 1 1
yes integer

C_USE_BARREL Include barrel shifter 0, 1 0 integer

C_USE_DIV Include hardware divider 0, 1 0 integer

C_USE_HW_MUL Include hardware
multiplier
0 = None
1 = Mul32
2 = Mul64

0, 1, 2 1

integer

C_USE_FPU Include hardware floating
point unit
0 = None
1 = Basic
2 = Extended

0, 1, 2 0

integer

C_USE_MSR_INSTR Enable use of instructions:
MSRSET and MSRCLR

0, 1 1
integer

C_USE_PCMP_INSTR Enable use of instructions:
CLZ, PCMPBF,
PCMPEQ, and PCMPNE

0, 1 1
integer

C_UNALIGNED_EXCEPTIONS Enable exception handling
for unaligned data accesses

0, 1 0
integer

C_ILL_OPCODE_EXCEPTION Enable exception handling
for illegal op-code

0, 1 0
integer

C_IPLB_BUS_EXCEPTION Enable exception handling
for IPLB bus error

0, 1 0
integer

C_DPLB_BUS_EXCEPTION Enable exception handling
for DPLB bus error

0, 1 0
integer

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 133
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
C_M_AXI_I_BUS_EXCEPTION Enable exception handling
for M_AXI_I bus error

0, 1 0
integer

C_M_AXI_D_BUS_EXCEPTION Enable exception handling
for M_AXI_D bus error

0, 1 0
integer

C_DIV_ZERO_EXCEPTION Enable exception handling
for division by zero or
division overflow

0, 1 0
integer

C_FPU_EXCEPTION Enable exception handling
for hardware floating point
unit exceptions

0, 1 0
integer

C_OPCODE_0x0_ILLEGAL Detect opcode 0x0 as an
illegal instruction

0,1 0
integer

C_FSL_EXCEPTION Enable exception handling
for Stream Links

0,1 0
integer

C_ECC_USE_CE_EXCEPTION Generate Bus Error
Exceptions for correctable
errors

0,1 0
integer

C_USE_STACK_PROTECTION Generate exception for
stack overflow or stack
underflow

0,1 0
integer

C_DEBUG_ENABLED MDM Debug interface 0,1 0 integer

C_NUMBER_OF_PC_BRK Number of hardware
breakpoints

0-8 1
integer

C_NUMBER_OF_RD_ADDR_BRK Number of read address
watchpoints

0-4 0
integer

C_NUMBER_OF_WR_ADDR_BRK Number of write address
watchpoints

0-4 0
integer

C_INTERRUPT_IS_EDGE Level/Edge Interrupt 0, 1 0 yes integer

C_EDGE_IS_POSITIVE Negative/Positive Edge
Interrupt

0, 1 1 yes
integer

C_FSL_LINKS1 Number of stream
interfaces (FSL or AXI)

0-16 0
yes integer

C_FSL_DATA_SIZE FSL data bus size 32 32 NA integer

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
134 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze Core Configurability
C_USE_EXTENDED_FSL_INSTR Enable use of extended
stream instructions

0, 1 0
integer

C_ICACHE_BASEADDR Instruction cache base
address

0x00000000 -
0xFFFFFFFF

0x0000
0000

std_logic_vector

C_ICACHE_HIGHADDR Instruction cache high
address

0x00000000 -
0xFFFFFFFF

0x3FFF
FFFF

std_logic_vector

C_USE_ICACHE Instruction cache 0, 1 0 integer

C_ALLOW_ICACHE_WR Instruction cache write
enable

0, 1 1
integer

C_ICACHE_LINE_LEN Instruction cache line
length

4, 8 4
integer

C_ICACHE_ALWAYS_USED Instruction cache
CacheLink used for all
memory accesses

0, 1 0
integer

C_ICACHE_INTERFACE Instruction cache
CacheLink interface
protocol

0 = IXCL
1 = IXCL2

0, 1 0 yes2

integer

C_ICACHE_FORCE_TAG_LUTRAM Instruction cache tag
always implemented with
distributed RAM

0, 1 0
integer

C_ICACHE_STREAMS Instruction cache streams 0, 1 0 integer

C_ICACHE_VICTIMS Instruction cache victims 0, 2, 4, 8 0 integer

C_ICACHE_DATA_WIDTH Instruction cache data
width

0 = 32 bits
1 = Full cache line
2 = 512 bits

0, 1, 2 0

integer

C_ADDR_TAG_BITS Instruction cache address
tags

0-25 17
yes integer

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 135
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
C_CACHE_BYTE_SIZE Instruction cache size 64, 128, 256,
512, 1024,

2048, 4096,
8192, 16384,

32768,
655363

8192

integer

C_ICACHE_USE_FSL Cache over CacheLink
instead of peripheral bus
for instructions

1 1
integer

C_DCACHE_BASEADDR Data cache base address 0x00000000 -
0xFFFFFFFF

0x0000
0000

std_logic_vector

C_DCACHE_HIGHADDR Data cache high address 0x00000000 -
0xFFFFFFFF

0x3FFF
FFFF

std_logic_vector

C_USE_DCACHE Data cache 0, 1 0 integer

C_ALLOW_DCACHE_WR Data cache write enable 0, 1 1 integer

C_DCACHE_LINE_LEN Data cache line length 4, 8 4 integer

C_DCACHE_ALWAYS_USED Data cache CacheLink
used for all accesses

0, 1 0
integer

C_DCACHE_INTERFACE Data cache CacheLink
interface protocol

0 = DXCL
1 = DXCL2

0, 1 0 yes2

integer

C_DCACHE_FORCE_TAG_LUTRAM Data cache tag always
implemented with
distributed RAM

0, 1 0
integer

C_DCACHE_USE_WRITEBACK Data cache write-back
storage policy used

0, 1 0
integer

C_DCACHE_VICTIMS Data cache victims 0, 2, 4, 8 0 integer

C_DCACHE_DATA_WIDTH Data cache data width

0 = 32 bits
1 = Full cache line
2 = 512 bits

0, 1, 2 0

integer

C_DCACHE_ADDR_TAG Data cache address tags 0-25 17 yes integer

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
136 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze Core Configurability
C_DCACHE_BYTE_SIZE Data cache size 64, 128, 256,
512, 1024,

2048, 4096,
8192, 16384,

32768,
655363

8192

integer

C_DCACHE_USE_FSL Cache over CacheLink
instead of peripheral bus
for data

1 1
integer

C_DPLB_DWIDTH Data side PLB data width 32 32 integer

C_DPLB_NATIVE_DWIDTH Data side PLB native data
width

32 32
integer

C_DPLB_BURST_EN Data side PLB burst enable 0 0 integer

C_DPLB_P2P Data side PLB Point-to-
point

0, 1 0
integer

C_IPLB_DWIDTH Instruction side PLB data
width

32 32
integer

C_IPLB_NATIVE_DWIDTH Instruction side PLB
native data width

32 32
integer

C_IPLB_BURST_EN Instruction side PLB burst
enable

0 0
integer

C_IPLB_P2P Instruction side PLB
Point-to-point

0, 1 0
integer

C_USE_MMU4 Memory Management:

0 = None
1 = User Mode
2 = Protection
3 = Virtual

0, 1, 2, 3 0

integer

C_MMU_DTLB_SIZE4 Data shadow Translation
Look-Aside Buffer size

1, 2, 4, 8 4
integer

C_MMU_ITLB_SIZE4 Instruction shadow
Translation Look-Aside
Buffer size

1, 2, 4, 8 2
integer

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 137
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
C_MMU_TLB_ACCESS4 Access to memory
management special
registers:

0 = Minimal
1 = Read
2 = Write
3 = Full

0, 1, 2, 3 3

integer

C_MMU_ZONES4 Number of memory
protection zones

0-16 16
integer

C_MMU_PRIVILEGED_INSTR4 Privileged instructions

0 = Full protection
1 = Allow stream instrs

0,1 0

integer

C_USE_INTERRUPT Enable interrupt handling 0,1 0 yes integer

C_USE_EXT_BRK Enable external break
handling

0,1 0
yes integer

C_USE_EXT_NM_BRK Enable external non-
maskable break handling

0,1 0
yes integer

C_USE_BRANCH_TARGET_CACHE4 Enable Branch Target
Cache

0,1 0
integer

C_BRANCH_TARGET_CACHE_SIZE4 Branch Target Cache size:

0 = Default
1 = 8 entries
2 = 16 entries
3 = 32 entries
4 = 64 entries
5 = 512 entries
6 = 1024 entries
7 = 2048 entries

0-7 0 integer

C_M_AXI_DP_
THREAD_ID_WIDTH

Data side AXI thread ID
width

1 1
integer

C_M_AXI_DP_DATA_WIDTH Data side AXI data width 32 32 integer

C_M_AXI_DP_ADDR_WIDTH Data side AXI address
width

32 32
integer

C_M_AXI_DP_
SUPPORTS_THREADS

Data side AXI uses threads
0 0

integer

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
138 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze Core Configurability
C_M_AXI_DP_SUPPORTS_READ Data side AXI support for
read accesses

1 1
integer

C_M_AXI_DP_SUPPORTS_WRITE Data side AXI support for
write accesses

1 1
integer

C_M_AXI_DP_SUPPORTS_
NARROW_BURST

Data side AXI narrow
burst support

0 0
integer

C_M_AXI_DP_PROTOCOL Data side AXI protocol AXI4,
AXI4LITE

AXI4
LITE

yes string

C_M_AXI_DP_
EXCLUSIVE_ACCESS

Data side AXI exclusive
access support

0,1 0
integer

C_INTERCONNECT_
M_AXI_DP_READ_ISSUING

Data side AXI read
accesses issued

1 1
integer

C_INTERCONNECT_
M_AXI_DP_WRITE_ISSUING

Data side AXI write
accesses issued

1 1
integer

C_M_AXI_IP_
THREAD_ID_WIDTH

Instruction side AXI
thread ID width

1 1
integer

C_M_AXI_IP_DATA_WIDTH Instruction side AXI data
width

32 32
integer

C_M_AXI_IP_ADDR_WIDTH Instruction side AXI
address width

32 32
integer

C_M_AXI_IP_
SUPPORTS_THREADS

Instruction side AXI uses
threads

0 0
integer

C_M_AXI_IP_SUPPORTS_READ Instruction side AXI
support for read accesses

1 1
integer

C_M_AXI_IP_SUPPORTS_WRITE Instruction side AXI
support for write accesses

0 0
integer

C_M_AXI_IP_SUPPORTS_
NARROW_BURST

Instruction side AXI
narrow burst support

0 0
integer

C_M_AXI_IP_PROTOCOL Instruction side AXI
protocol

AXI4LITE
AXI4
LITE

string

C_INTERCONNECT_
M_AXI_IP_READ_ISSUING

Instruction side AXI read
accesses issued

1 1
integer

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 139
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
C_M_AXI_DC_
THREAD_ID_WIDTH

Data cache AXI ID width
1 1

integer

C_M_AXI_DC_DATA_WIDTH Data cache AXI data width 32, 64, 128,
256, 512

32
integer

C_M_AXI_DC_ADDR_WIDTH Data cache AXI address
width

32 32
integer

C_M_AXI_DC_
SUPPORTS_THREADS

Data cache AXI uses
threads

0 0
integer

C_M_AXI_DC_SUPPORTS_READ Data cacheAXI support for
read accesses

1 1
integer

C_M_AXI_DC_SUPPORTS_WRITE Data cache AXI support
for write accesses

1 1
integer

C_M_AXI_DC_SUPPORTS_
NARROW_BURST

Data cache AXI narrow
burst support

0 0
integer

C_M_AXI_DC_SUPPORTS_
USER_SIGNALS

Data cache AXI user signal
support

1 1
integer

C_M_AXI_DC_PROTOCOL Data cache AXI protocol AXI4 AXI4 string

C_M_AXI_DC_AWUSER_WIDTH Data cache AXI user width 5 5 integer

C_M_AXI_DC_ARUSER_WIDTH Data cache AXI user width 5 5 integer

C_M_AXI_DC_WUSER_WIDTH Data cache AXI user width 1 1 integer

C_M_AXI_DC_RUSER_WIDTH Data cache AXI user width 1 1 integer

C_M_AXI_DC_BUSER_WIDTH Data cache AXI user width 1 1 integer

C_M_AXI_DC_
EXCLUSIVE_ACCESS

Data cache AXI exclusive
access support

0,1 0
integer

C_M_AXI_DC_USER_VALUE Data cache AXI user value 0-31 31 integer

C_INTERCONNECT_
M_AXI_DC_READ_ISSUING

Data cache AXI read
accesses issued

1,2 2 integer

C_INTERCONNECT_
M_AXI_DC_WRITE_ISSUING

Data cache AXI write
accesses issued

1,2,4,8,16,32 32 integer

C_M_AXI_IC_
THREAD_ID_WIDTH

Instruction cache AXI ID
width

1 1
integer

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
140 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

MicroBlaze Core Configurability
C_M_AXI_IC_DATA_WIDTH Instruction cache AXI data
width

32, 64, 128,
256, 512

32
integer

C_M_AXI_IC_ADDR_WIDTH Instruction cache AXI
address width

32 32
integer

C_M_AXI_IC_
SUPPORTS_THREADS

Instruction cache AXI uses
threads

0 0
integer

C_M_AXI_IC_SUPPORTS_READ Instruction cache AXI
support for read accesses

1 1
integer

C_M_AXI_IC_SUPPORTS_WRITE Instruction cache AXI
support for write accesses

0 0
integer

C_M_AXI_IC_SUPPORTS_
NARROW_BURST

Instruction cache AXI
narrow burst support

0 0
integer

C_M_AXI_IC_SUPPORTS_
USER_SIGNALS

Instruction cache AXI user
signal support

1 1
integer

C_M_AXI_IC_PROTOCOL Instruction cache AXI
protocol

AXI4 AXI4
string

C_M_AXI_IC_AWUSER_WIDTH Instruction cache AXI user
width

5 5
integer

C_M_AXI_IC_ARUSER_WIDTH Instruction cache AXI user
width

5 5
integer

C_M_AXI_IC_WUSER_WIDTH Instruction cache AXI user
width

1 1
integer

C_M_AXI_IC_RUSER_WIDTH Instruction cache AXI user
width

1 1
integer

C_M_AXI_IC_BUSER_WIDTH Instruction cache AXI user
width

1 1
integer

C_M_AXI_IC_USER_VALUE Instruction cache AXI user
value

0-31 31
integer

C_INTERCONNECT_
M_AXI_IC_READ_ISSUING

Instruction cache AXI read
accesses issued

1,2,4,8 2
yes integer

C_STREAM_INTERCONNECT Select AXI4-Stream
interconnect

0,1 0
integer

C_Mn_AXIS_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 141
UG081 (v13.3)

http://www.xilinx.com

Chapter 3: MicroBlaze Signal Interface Description
C_Sn_AXIS_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string

C_Mn_AXIS_DATA_WIDTH AXI4-Stream master data
width

32 32
NA integer

C_Sn_AXIS_DATA_WIDTH AXI4-Stream slave data
width

32 32
NA integer

1. The number of Stream Links (FSL or AXI4) is assigned by the tool itself if you are using the co-processor wizard. If you add the IP manually, you
must update the parameter manually.

2. EDK tool assigned value can be overridden by explicit assignment.
3. Not all sizes are permitted in all architectures. The cache uses between 0 and 32 RAMB primitives (0 if cache size is less than 2048).
4. Not available when C_AREA_OPTIMIZED is set to 1.

Table 3-15: MPD Parameters (Continued)

Parameter Name Feature/Description
Allowable

Values
Default
Value

EDK
Tool

Assig
ned

VHDL Type
142 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Chapter 4

MicroBlaze Application Binary Interface

This chapter describes MicroBlaze™ Application Binary Interface (ABI), which is important for
developing software in assembly language for the soft processor. The MicroBlaze GNU compiler
follows the conventions described in this document. Any code written by assembly programmers
should also follow the same conventions to be compatible with the compiler generated code.
Interrupt and Exception handling is also explained briefly.

Data Types
The data types used by MicroBlaze assembly programs are shown in Table 4-1. Data types such as
data8, data16, and data32 are used in place of the usual byte, half-word, and word.register

Table 4-1: Data Types in MicroBlaze Assembly Programs

MicroBlaze data types
(for assembly programs)

Corresponding ANSI
C data types

Size (bytes)

data8 char 1

data16 short 2

data32 int 4

data32 long int 4

data32 float 4

data32 enum 4

data16/data32 pointera

a. Pointers to small data areas, which can be accessed by global pointers are data16.

2/4
MicroBlaze Processor Reference Guide www.xilinx.com 143
UG081 (v13.3)

http://www.xilinx.com

Chapter 4: MicroBlaze Application Binary Interface
Register Usage Conventions
The register usage convention for MicroBlaze is given in Table 4-2.

Table 4-2: Register Usage Conventions

Register Type Enforcement Purpose

R0 Dedicated HW Value 0

R1 Dedicated SW Stack Pointer

R2 Dedicated SW Read-only small data area anchor

R3-R4 Volatile SW Return Values/Temporaries

R5-R10 Volatile SW Passing parameters/Temporaries

R11-R12 Volatile SW Temporaries

R13 Dedicated SW Read-write small data area anchor

R14 Dedicated HW Return address for Interrupt

R15 Dedicated SW Return address for Sub-routine

R16 Dedicated HW Return address for Trap (Debugger)

R17 Dedicated HW, if configured
to support HW

exceptions,
else SW

Return address for Exceptions

R18 Dedicated SW Reserved for Assembler/Compiler Temporaries

R19 Non-volatile SW Must be saved across function calls. Callee-save

R20 Dedicated

or

Non-volatile

SW Reserved for storing a pointer to the Global Offset
Table (GOT) in Position Independent Code (PIC).
Non-volatile in non-PIC code. Must be saved across
function calls. Callee-save

R21-R31 Non-volatile SW Must be saved across function calls. Callee-save

RPC Special HW Program counter

RMSR Special HW Machine Status Register

REAR Special HW Exception Address Register

RESR Special HW Exception Status Register

RFSR Special HW Floating Point Status Register

RBTR Special HW Branch Target Register

REDR Special HW Exception Data Register

RPID Special HW Process Identifier Register

RZPR Special HW Zone Protection Register

RTLBLO Special HW Translation Look-Aside Buffer Low Register

RTLBHI Special HW Translation Look-Aside Buffer High Register

RTLBX Special HW Translation Look-Aside Buffer Index Register

RTLBSX Special HW Translation Look-Aside Buffer Search Index

RPVR0-
RPVR11

Special HW Processor Version Register 0 through 11
144 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Stack Convention
The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These registers are
classified as volatile, non-volatile, and dedicated.

 The volatile registers (also known as caller-save) are used as temporaries and do not retain
values across the function calls. Registers R3 through R12 are volatile, of which R3 and R4 are
used for returning values to the caller function, if any. Registers R5 through R10 are used for
passing parameters between subroutines.

 Registers R19 through R31 retain their contents across function calls and are hence termed as
non-volatile registers (a.k.a callee-save). The callee function is expected to save those non-
volatile registers, which are being used. These are typically saved to the stack during the
prologue and then reloaded during the epilogue.

 Certain registers are used as dedicated registers and programmers are not expected to use them
for any other purpose.

 Registers R14 through R17 are used for storing the return address from interrupts, sub-
routines, traps, and exceptions in that order. Subroutines are called using the branch and
link instruction, which saves the current Program Counter (PC) onto register R15.

 Small data area pointers are used for accessing certain memory locations with 16- bit
immediate value. These areas are discussed in the memory model section of this
document. The read only small data area (SDA) anchor R2 (Read-Only) is used to access
the constants such as literals. The other SDA anchor R13 (Read-Write) is used for
accessing the values in the small data read-write section.

 Register R1 stores the value of the stack pointer and is updated on entry and exit from
functions.

 Register R18 is used as a temporary register for assembler operations.

 MicroBlaze includes special purpose registers such as: program counter (rpc), machine status
register (rmsr), exception status register (resr), exception address register (rear), floating point
status register (rfsr), branch target register (rbtr), exception data register (redr), memory
management registers (rpid, rzpr, rtlblo, rtlbhi, rtlbx, rtlbsx), and processor version registers
(rpvr0-rpvr11). These registers are not mapped directly to the register file and hence the usage
of these registers is different from the general purpose registers. The value of a special purpose
registers can be transferred to or from a general purpose register by using mts and mfs
instructions respectively.

Stack Convention
The stack conventions used by MicroBlaze are detailed in Table 4-3.

The shaded area in Table 4-3 denotes a part of the stack frame for a caller function, while the
unshaded area indicates the callee frame function. The ABI conventions of the stack frame define
the protocol for passing parameters, preserving non-volatile register values, and allocating space for
the local variables in a function.

Functions that contain calls to other subroutines are called as non-leaf functions. These non-leaf
functions have to create a new stack frame area for its own use. When the program starts executing,
the stack pointer has the maximum value. As functions are called, the stack pointer is decremented
by the number of words required by every function for its stack frame. The stack pointer of a caller
function always has a higher value as compared to the callee function.
MicroBlaze Processor Reference Guide www.xilinx.com 145
UG081 (v13.3)

http://www.xilinx.com

Chapter 4: MicroBlaze Application Binary Interface
Table 4-3: Stack Convention

Consider an example where Func1 calls Func2, which in turn calls Func3. The stack representation
at different instances is depicted in Figure 4-1. After the call from Func 1 to Func 2, the value of the
stack pointer (SP) is decremented. This value of SP is again decremented to accommodate the stack
frame for Func3. On return from Func 3 the value of the stack pointer is increased to its original
value in the function, Func 2.

Details of how the stack is maintained are shown in Figure 4-1.

High Address

Function Parameters for called sub-routine (Arg n .. Arg1)

(Optional: Maximum number of arguments required for any called
procedure from the current procedure).

Old Stack Pointer Link Register (R15)

Callee Saved Register (R31....R19)

(Optional: Only those registers which are used by the current procedure
are saved)

Local Variables for Current Procedure

(Optional: Present only if Locals defined in the procedure)

Functional Parameters (Arg n .. Arg 1)

(Optional: Maximum number of arguments required for any called
procedure from the current procedure)

New Stack
Pointer

Link Register

Low Address

X-Ref Target - Figure 4-1

Figure 4-1: Stack Frame

X9584

High Memory

Low Memory

SP

Func 1

SP

Func 1

Func 2

SP

Func 1

Func 2

Func 3
SP

Func 1

Func 2
146 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Memory Model
Calling Convention
The caller function passes parameters to the callee function using either the registers
(R5 through R10) or on its own stack frame. The callee uses the stack area of the caller to store the
parameters passed to the callee.

Refer to Figure 4-1. The parameters for Func 2 are stored either in the registers R5 through R10 or
on the stack frame allocated for Func 1.

If Func 2 has more than six integer parameters, the first six parameters can be passed in registers R5
through R10, whereas all subsequent parameters must be passed on the stack frame allocated for
Func 1, starting at offset SP + 28.

Memory Model
The memory model for MicroBlaze classifies the data into four different parts: Small Data Area,
Data Area, Common Un-Initialized Area, and Literals or Constants.

Small Data Area
Global initialized variables which are small in size are stored in this area. The threshold for deciding
the size of the variable to be stored in the small data area is set to 8 bytes in the MicroBlaze C
compiler (mb-gcc), but this can be changed by giving a command line option to the compiler.
Details about this option are discussed in the GNU Compiler Tools chapter. 64 kilobytes of memory
is allocated for the small data areas. The small data area is accessed using the read-write small data
area anchor (R13) and a 16-bit offset. Allocating small variables to this area reduces the requirement
of adding IMM instructions to the code for accessing global variables. Any variable in the small
data area can also be accessed using an absolute address.

Data Area
Comparatively large initialized variables are allocated to the data area, which can either be accessed
using the read-write SDA anchor R13 or using the absolute address, depending on the command line
option given to the compiler.

Common Un-Initialized Area
Un-initialized global variables are allocated in the common area and can be accessed either using the
absolute address or using the read-write small data area anchor R13.

Literals or Constants
Constants are placed into the read-only small data area and are accessed using the read-only small
data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual values of the
SDA anchors are decided by the linker, in the final linking stages. For more information on the
various sections of the memory please refer to MicroBlaze Linker Script Sections in the Embedded
System Tools Reference Manual.The compiler generates appropriate sections, depending on the
command line options. Please refer to the GNU Compiler Tools chapter in the Embedded System
Tools Reference Manual for more information about these options.
MicroBlaze Processor Reference Guide www.xilinx.com 147
UG081 (v13.3)

http://www.xilinx.com

Chapter 4: MicroBlaze Application Binary Interface
Interrupt and Exception Handling
MicroBlaze assumes certain address locations for handling interrupts and exceptions as indicated in
Table 4-4. At these locations, code is written to jump to the appropriate handlers.

The code expected at these locations is as shown below. For programs compiled without the -xl-
mode-xmdstub compiler option, the crt0.o initialization file is passed by the mb-gcc
compiler to the mb-ld linker for linking. This file sets the appropriate addresses of the exception
handlers.

For programs compiled with the -xl-mode-xmdstub compiler option, the crt1.o
initialization file is linked to the output program. This program has to be run with the xmdstub
already loaded in the memory at address location 0x0. Hence at run-time, the initialization code in
crt1.o writes the appropriate instructions to location 0x8 through 0x14 depending on the address
of the exception and interrupt handlers.

The following is code for passing control to Exception and Interrupt handlers:

0x00: bri _start1
0x04: nop
0x08: imm high bits of address (user exception handler)
0x0c: bri _exception_handler
0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt_handler
0x20: imm high bits of address (HW exception handler
0x24: bri _hw_exception_handler

MicroBlaze allows exception and interrupt handler routines to be located at any address location
addressable using 32 bits. The user exception handler code starts with the label
_exception_handler, the hardware exception handler starts with
_hw_exception_handler, while the interrupt handler code starts with the label
_interrupt_handler.

In the current MicroBlaze system, there are dummy routines for interrupt and exception handling,
which you can change. In order to override these routines and link your interrupt and exception
handlers, you must define the interrupt handler code with an attribute interrupt_handler. For
more details about the use and syntax of the interrupt handler attribute, please refer to the GNU
Compiler Tools chapter in the Embedded System Tools Reference Guide.

When software breakpoints are used in the Xilinx Microprocessor Debug (XMD) tool, the Break
(HW/SW) address location is reserved for handling the software breakpoint.

Table 4-4: Interrupt and Exception Handling

On Hardware jumps to Software Labels

Start / Reset 0x0 _start

User exception 0x8 _exception_handler

Interrupt 0x10 _interrupt_handler

Break (HW/SW) 0x18 -

Hardware exception 0x20 _hw_exception_handler

Reserved by Xilinx for
future use

0x28 - 0x4F
-

148 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Chapter 5

MicroBlaze Instruction Set Architecture

This chapter provides a detailed guide to the Instruction Set Architecture of MicroBlaze™.

Notation
The symbols used throughout this chapter are defined in Table 5-1.

Table 5-1: Symbol Notation

Symbol Meaning

+ Add

- Subtract

 Multiply

/ Divide

 Bitwise logical AND

 Bitwise logical OR

 Bitwise logical XOR

x Bitwise logical complement of x

 Assignment

>> Right shift

<< Left shift

rx Register x

x[i] Bit i in register x

x[i:j] Bits i through j in register x

= Equal comparison

 Not equal comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

| Signal choice
MicroBlaze Processor Reference Guide www.xilinx.com 149
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
sext(x) Sign-extend x

Mem(x) Memory location at address x

FSLx Stream interface x (FSL or AXI)

LSW(x) Least Significant Word of x

isDnz(x) Floating point: true if x is denormalized

isInfinite(x) Floating point: true if x is + or -

isPosInfinite(x) Floating point: true if x is +

isNegInfinite(x) Floating point: true if x -

isNaN(x) Floating point: true if x is a quiet or signalling NaN

isZero(x) Floating point: true if x is +0 or -0

isQuietNaN(x) Floating point: true if x is a quiet NaN

isSigNaN(x) Floating point: true if x is a signaling NaN

signZero(x) Floating point: return +0 for x > 0, and -0 if x < 0

signInfinite(x) Floating point: return + for x > 0, and - if x < 0

Table 5-1: Symbol Notation (Continued)

Symbol Meaning
150 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Formats
Formats
MicroBlaze uses two instruction formats: Type A and Type B.

Type A

Type A is used for register-register instructions. It contains the opcode, one destination and two
source registers.

Type B

Type B is used for register-immediate instructions. It contains the opcode, one destination and one
source registers, and a source 16-bit immediate value.

Instructions
This section provides descriptions of MicroBlaze instructions. Instructions are listed in alphabetical
order. For each instruction Xilinx provides the mnemonic, encoding, a description, pseudocode of
its semantics, and a list of registers that it modifies.

Opcode Destination Reg Source Reg A Source Reg B 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

Opcode Destination Reg Source Reg A Immediate Value

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 151
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
add Arithmetic Add

Description

The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addk. Bit 4 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addc. Both bits are set to one
for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add, addc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addc, addkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (add, addk), the content of the carry
flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then
(rD) (rA) + (rB)

else
(rD) (rA) + (rB) + MSR[C]

if K = 0 then
MSR[C] CarryOut

Registers Altered

 rD

 MSR[C]

Latency

1 cycle

Note

The C bit in the instruction opcode is not the same as the carry bit in the MSR.

The “add r0, r0, r0” (= 0x00000000) instruction is never used by the compiler and usually indicates
uninitialized memory. If you are using illegal instruction exceptions you can trap these instructions
by setting the MicroBlaze parameter C_OPCODE_0x0_ILLEGAL=1.

add rD, rA, rB Add

addc rD, rA, rB Add with Carry

addk rD, rA, rB Add and Keep Carry

addkc rD, rA, rB Add with Carry and Keep Carry

0 0 0 K C 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

152 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
addi Arithmetic Add Immediate

Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32 bits, is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
addic. Both bits are set to one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi, addic), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addic, addikc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (addi, addik), the content of the carry
flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then
(rD) (rA) + sext(IMM)

else
(rD) (rA) + sext(IMM) + MSR[C]

if K = 0 then
MSR[C] CarryOut

Registers Altered

 rD

 MSR[C]

Latency

1 cycle

Notes

The C bit in the instruction opcode is not the same as the carry bit in the MSR.

By default, Type B Instructions take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

addi rD, rA, IMM Add Immediate

addic rD, rA, IMM Add Immediate with Carry

addik rD, rA, IMM Add Immediate and Keep Carry

addikc rD, rA, IMM Add Immediate with Carry and Keep Carry

0 0 1 K C 0 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 153
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
and Logical AND

Description

The contents of register rA are ANDed with the contents of register rB; the result is placed into
register rD.

Pseudocode

(rD) (rA) (rB)

Registers Altered

 rD

Latency

1 cycle

and rD, rA, rB

1 0 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

154 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
andi Logial AND with Immediate

Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode

(rD) (rA) sext(IMM)

Registers Altered

 rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

andi rD, rA, IMM

1 0 1 0 0 1 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 155
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
andn Logical AND NOT

Description

The contents of register rA are ANDed with the logical complement of the contents of register rB;
the result is placed into register rD.

Pseudocode

(rD) (rA) (rB)

Registers Altered

 rD

Latency

1 cycle

andn rD, rA, rB

1 0 0 0 1 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

156 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
andni Logical AND NOT with Immediate

Description

The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the logical
complement of the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) (rA) (sext(IMM))

Registers Altered

 rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

andni rD, rA, IMM

1 0 1 0 1 1 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 157
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
beq Branch if Equal

Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA = 0 then
PC PC + rB

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

beq rA, rB Branch if Equal

beqd rA, rB Branch if Equal with Delay

1 0 0 1 1 1 D 0 0 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

158 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
beqi Branch Immediate if Equal

Description

Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA = 0 then
PC PC + sext(IMM)

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

1 cycle (if branch is not taken, or successful branch prediction occurs)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

beqi rA, IMM Branch Immediate if Equal

beqid rA, IMM Branch Immediate if Equal with Delay

1 0 1 1 1 1 D 0 0 0 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 159
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
bge Branch if Greater or Equal

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA >= 0 then
PC PC + rB

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if branch is not taken)

 2 cycles (if branch is taken and the D bit is set)

 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bge rA, rB Branch if Greater or Equal

bged rA, rB Branch if Greater or Equal with Delay

1 0 0 1 1 1 D 0 1 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

160 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
bgei Branch Immediate if Greater or Equal

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA >= 0 then
PC PC + sext(IMM)

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if branch is not taken, or successful branch prediction occurs)

 2 cycles (if branch is taken and the D bit is set)

 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bgei rA, IMM Branch Immediate if Greater or Equal

bgeid rA, IMM Branch Immediate if Greater or Equal with Delay

1 0 1 1 1 1 D 0 1 0 1 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 161
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
bgt Branch if Greater Than

Description

Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA > 0 then
PC PC + rB

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if branch is not taken)

 2 cycles (if branch is taken and the D bit is set)

 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bgt rA, rB Branch if Greater Than

bgtd rA, rB Branch if Greater Than with Delay

1 0 0 1 1 1 D 0 1 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

162 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
bgti Branch Immediate if Greater Than

Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA > 0 then
PC PC + sext(IMM)

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if branch is not taken, or successful branch prediction occurs)

 2 cycles (if branch is taken and the D bit is set)

 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bgti rA, IMM Branch Immediate if Greater Than

bgtid rA, IMM Branch Immediate if Greater Than with Delay

1 0 1 1 1 1 D 0 1 0 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 163
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
ble Branch if Less or Equal

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA <= 0 then
PC PC + rB

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if branch is not taken)

 2 cycles (if branch is taken and the D bit is set)

 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

ble rA, rB Branch if Less or Equal

bled rA, rB Branch if Less or Equal with Delay

1 0 0 1 1 1 D 0 0 1 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

164 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
blei Branch Immediate if Less or Equal

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The target of
the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA <= 0 then
PC PC + sext(IMM)

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if branch is not taken, or successful branch prediction occurs)

 2 cycles (if branch is taken and the D bit is set)

 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

blei rA, IMM Branch Immediate if Less or Equal

bleid rA, IMM Branch Immediate if Less or Equal with Delay

1 0 1 1 1 1 D 0 0 1 1 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 165
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
blt Branch if Less Than

Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA < 0 then
PC PC + rB

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if branch is not taken)

 2 cycles (if branch is taken and the D bit is set)

 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

blt rA, rB Branch if Less Than

bltd rA, rB Branch if Less Than with Delay

1 0 0 1 1 1 D 0 0 1 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

166 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
blti Branch Immediate if Less Than

Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA < 0 then
PC PC + sext(IMM)

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if branch is not taken, or successful branch prediction occurs)

 2 cycles (if branch is taken and the D bit is set)

 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

blti rA, IMM Branch Immediate if Less Than

bltid rA, IMM Branch Immediate if Less Than with Delay

1 0 1 1 1 1 D 0 0 1 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 167
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
bne Branch if Not Equal

Description

Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA 0 then
PC PC + rB

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bne rA, rB Branch if Not Equal

bned rA, rB Branch if Not Equal with Delay

1 0 0 1 1 1 D 0 0 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

168 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
bnei Branch Immediate if Not Equal

Description

Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA 0 then
PC PC + sext(IMM)

else
PC PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if branch is not taken, or successful branch prediction occurs)

 2 cycles (if branch is taken and the D bit is set)

 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

bnei rA, IMM Branch Immediate if Not Equal

bneid rA, IMM Branch Immediate if Not Equal with Delay

1 0 1 1 1 1 D 0 0 0 1 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 169
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
br Unconditional Branch

Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the branch is
to an absolute value and the target is the value in rB, otherwise, it is a relative branch and the target
will be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

if L = 1 then
(rD) PC

if A = 1 then
PC (rB)

else
PC PC + (rB)
if D = 1 then

allow following instruction to complete execution

Registers Altered

 rD

 PC

Latency

 2 cycles (if the D bit is set)

 3 cycles (if the D bit is not set)

br rB Branch

bra rB Branch Absolute

brd rB Branch with Delay

brad rB Branch Absolute with Delay

brld rD, rB Branch and Link with Delay

brald rD, rB Branch Absolute and Link with Delay

1 0 0 1 1 0 rD D A L 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

170 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
Note

The instructions brl and bral are not available. A delay slot must not be used by the following: imm,
branch, or break instructions. Interrupts and external hardware breaks are deferred until after the
delay slot branch has been completed.
MicroBlaze Processor Reference Guide www.xilinx.com 171
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
bri Unconditional Branch Immediate

Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the branch
is to an absolute value and the target is the value in IMM, otherwise, it is a relative branch and the
target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether there is
a branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and
“bralid rD, 0x8“is used to perform a User Vector Exception, the Machine Status Register bits
User Mode and Virtual Mode are cleared.

Pseudocode

if L = 1 then
(rD) PC

if A = 1 then
PC sext(IMM)

else
PC PC + sext(IMM)

if D = 1 then
allow following instruction to complete execution

if D = 1 and A = 1 and L = 1 and IMM = 0x8 then
MSR[UMS] MSR[UM]
MSR[VMS] MSR[VM]
MSR[UM] 0
MSR[VM] 0

bri IMM Branch Immediate

brai IMM Branch Absolute Immediate

brid IMM Branch Immediate with Delay

braid IMM Branch Absolute Immediate with Delay

brlid rD, IMM Branch and Link Immediate with Delay

bralid rD, IMM Branch Absolute and Link Immediate with Delay

1 0 1 1 1 0 rD D A L 0 0 IMM

0 6 1
1

1
6

3
1

172 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
Registers Altered

 rD

 PC

 MSR[UM], MSR[VM]

Latency

 1 cycle (if successful branch prediction occurs)

 2 cycles (if the D bit is set)

 3 cycles (if the D bit is not set, or a branch prediction mispredict occurs)

Notes

The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide www.xilinx.com 173
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
brk Break

Description

Branch and link to the instruction located at address value in rB. The current value of PC will be
stored in rD. The BIP flag in the MSR will be set, and the reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
(rD) PC
PC (rB)
MSR[BIP]
Reservation

Registers Altered

 rD

 PC

 MSR[BIP]

 ESR[EC], in case a privileged instruction exception is generated

Latency

 3 cycles

brk rD, rB

1 0 0 1 1 0 rD 0 1 1 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
174 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
brki Break Immediate

Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits. The
current value of PC will be stored in rD. The BIP flag in the MSR will be set, and the reservation bit
will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged,
except as a special case when “brki rD, 0x8” or “brki rD, 0x18” is used to perform a
Software Break. This means that, apart from the special case, if the instruction is attempted in User
Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and “brki
rD, 0x8” or “brki rD, 0x18” is used to perform a Software Break, the Machine Status Register
bits User Mode and Virtual Mode are cleared.

Pseudocode

if MSR[UM] = 1 and IMM 0x8 and IMM 0x18 then
ESR[EC] 00111

else
(rD) PC
PC sext(IMM)
MSR[BIP]
Reservation
if IMM = 0x8 or IMM = 0x18 then
MSR[UMS] MSR[UM]MSR[UM] 0
MSR[VMS] MSR[VM]MSR[VM] 0

Registers Altered

 rD, unless an exception is generated, in which case the register is unchanged

 PC

 MSR[BIP], MSR[UM], MSR[VM]

 ESR[EC], in case a privileged instruction exception is generated

Latency

 3 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

As a special case, the imm instruction does not override a Software Break “brki rD, 0x18” when
C_USE_DEBUG. is set, to allow Software Break after an imm instruction.

brki rD, IMM

1 0 1 1 1 0 rD 0 1 1 0 0 IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 175
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
bs Barrel Shift

Description

Shifts the contents of register rA by the amount specified in register rB and puts the result in register
rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode

if S = 1 then
(rD) (rA) (rB)[27:31]

else
if T = 1 then
if ((rB)[27:31]) 0 then
(rD)[0:(rB)[27:31]-1] (rA)]
(rD)[(rB)[27:31]:31] (rA) (rB)[27:31]

else
(rD) (rA)

else
(rD) (rA) (rB)[27:31]

Registers Altered

 rD

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Note

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

bsrl rD, rA, rB Barrel Shift Right Logical

bsra rD, rA, rB Barrel Shift Right Arithmetical

bsll rD, rA, rB Barrel Shift Left Logical

0 1 0 0 0 1 rD rA rB S T 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

176 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
bsi Barrel Shift Immediate

Description

Shifts the contents of register rA by the amount specified by IMM and puts the result in register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode

if S = 1 then
(rD) (rA) IMM

else
if T = 1 then
if IMM 0 then
(rD)[0:IMM-1] (rA)]
(rD)[IMM:31] (rA) IMM

else
(rD) (rA)

else
(rD) (rA) IMM

Registers Altered

 rD

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Notes

These are not Type B Instructions. There is no effect from a preceding imm instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate

bsrai rD, rA, IMM Barrel Shift Right Arithmetical Immediate

bslli rD, rA, IMM Barrel Shift Left Logical Immediate

0 1 1 0 0 1 rD rA 0 0 0 0 0 S T 0 0 0 0 IMM

0 6 1
1

1
6

2
1

2
7

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 177
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
clz Count Leading Zeros

Description

This instruction counts the number of leading zeros in register rA starting from the most significant
bit. The result is a number between 0 and 32, stored in register rD.

The result in rD is 32 when rA is 0, and it is 0 if rA is 0xFFFFFFFF.

Pseudocode

n 0
while (rA)[n] = 0

n n + 1
(rD) n

Registers Altered

 rD

Latency

 1 cycle

Notes

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

clz rD, rA Count leading zeros in rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

178 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
cmp Integer Compare

Description

The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set, rA and
rB is considered unsigned values. If the U bit is clear, rA and rB is considered signed values.

Pseudocode

(rD) (rB) + (rA) + 1
(rD)(MSB) (rA) > (rB)

Registers Altered

 rD

Latency

 1 cycle

cmp rD, rA, rB compare rB with rA (signed)

cmpu rD, rA, rB compare rB with rA (unsigned)

0 0 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 U 1

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 179
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
fadd Floating Point Arithmetic Add

Description

The floating point sum of registers rA and rB, is placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rD) 0xFFC00000
FSR[DO] 1
ESR[EC] 00110

else if isSigNaN(rA) or isSigNaN(rB)or
(isPosInfinite(rA) and isNegInfinite(rB)) or
(isNegInfinite(rA) and isPosInfinite(rB))) then

(rD) 0xFFC00000
FSR[IO] 1
ESR[EC] 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) 0xFFC00000

else if isDnz((rA)+(rB)) then
(rD) signZero((rA)+(rB))
FSR[UF] 1
ESR[EC] 00110

else if isNaN((rA)+(rB)) then
(rD) signInfinite((rA)+(rB))
FSR[OF] 1
ESR[EC] 00110

else
(rD) (rA) + (rB)

Registers Altered

 rD, unless an FP exception is generated, in which case the register is unchanged

 ESR[EC], if an FP exception is generated

 FSR[IO,UF,OF,DO]

Latency

 4 cycles with C_AREA_OPTIMIZED=0

 6 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

fadd rD, rA, rB Add

0 1 0 1 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
180 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
frsub Reverse Floating Point Arithmetic Subtraction

Description

The floating point value in rA is subtracted from the floating point value in rB and the result is
placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rD) 0xFFC00000
FSR[DO] 1
ESR[EC] 00110

else if (isSigNaN(rA) or isSigNaN(rB) or
(isPosInfinite(rA) and isPosInfinite(rB)) or
(isNegInfinite(rA) and isNegInfinite(rB))) then

(rD) 0xFFC00000
FSR[IO] 1
ESR[EC] 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) 0xFFC00000

else if isDnz((rB)-(rA)) then
(rD) signZero((rB)-(rA))
FSR[UF] 1
ESR[EC] 00110

else if isNaN((rB)-(rA)) then
(rD) signInfinite((rB)-(rA))
FSR[OF] 1
ESR[EC] 00110

else
(rD) (rB) - (rA)

Registers Altered

 rD, unless an FP exception is generated, in which case the register is unchanged

 ESR[EC], if an FP exception is generated

 FSR[IO,UF,OF,DO]

Latency

 4 cycles with C_AREA_OPTIMIZED=0

 6 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

frsub rD, rA, rB Reverse subtract

0 1 0 1 1 0 rD rA rB 0 0 0 1 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 181
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
fmul Floating Point Arithmetic Multiplication

Description

The floating point value in rA is multiplied with the floating point value in rB and the result is placed
into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rD) 0xFFC00000
FSR[DO] 1
ESR[EC] 00110

else
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isInfinite(rB)) or

(isZero(rB) and isInfinite(rA))then
(rD) 0xFFC00000
FSR[IO] 1
ESR[EC] 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) 0xFFC00000

else if isDnz((rB)*(rA)) then
(rD) signZero((rA)*(rB))
FSR[UF] 1
ESR[EC] 00110

else if isNaN((rB)*(rA)) then
(rD) signInfinite((rB)*(rA))
FSR[OF] 1
ESR[EC] 00110

else
(rD) (rB) * (rA)

Registers Altered

 rD, unless an FP exception is generated, in which case the register is unchanged

 ESR[EC], if an FP exception is generated

 FSR[IO,UF,OF,DO]

Latency

 4 cycles with C_AREA_OPTIMIZED=0

 6 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

fmul rD, rA, rB Multiply

0 1 0 1 1 0 rD rA rB 0 0 1 0 0 0 0 0 0 0 0

0 6 11 16 21 31
182 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
fdiv Floating Point Arithmetic Division

Description

The floating point value in rB is divided by the floating point value in rA and the result is placed into
register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rD) 0xFFC00000
FSR[DO] 1
ESR[EC] 00110

else
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isZero(rB)) or

(isInfinite(rA) and isInfinite(rB)) then
(rD) 0xFFC00000
FSR[IO]
ESR[EC] 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) 0xFFC00000

else if isZero(rA) and not isInfinite(rB) then
(rD) signInfinite((rB)/(rA))
FSR[DZ] 1
ESR[EC] 00110

else if isDnz((rB) / (rA)) then
(rD) signZero((rB) / (rA))
FSR[UF] 1
ESR[EC] 00110

else if isNaN((rB)/(rA)) then
(rD) signInfinite((rB) / (rA))
FSR[OF] 1
ESR[EC] 00110

else
(rD) (rB) / (rA)

Registers Altered

 rD, unless an FP exception is generated, in which case the register is unchanged

 ESR[EC], if an FP exception is generated

 FSR[IO,UF,OF,DO,DZ]

Latency

 28 cycles with C_AREA_OPTIMIZED=0, 30 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

fdiv rD, rA, rB Divide

0 1 0 1 1 0 rD rA rB 0 0 1 1 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 183
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
fcmp Floating Point Number Comparison

Description

The floating point value in rB is compared with the floating point value in rA and the comparison
result is placed into register rD. The OpSel field in the instruction code determines the type of
comparison performed.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rD) 0
FSR[DO] 1
ESR[EC] 00110

else
{read out behavior from Table 5-2}

Registers Altered

 rD, unless an FP exception is generated, in which case the register is unchanged

 ESR[EC], if an FP exception is generated

 FSR[IO,DO]

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 3 cycles with C_AREA_OPTIMIZED=1

Note

These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than
0.

Table 5-2, page 185 lists the floating point comparison operations.

fcmp.un rD, rA, rB Unordered floating point comparison

fcmp.lt rD, rA, rB Less-than floating point comparison

fcmp.eq rD, rA, rB Equal floating point comparison

fcmp.le rD, rA, rB Less-or-Equal floating point comparison

fcmp.gt rD, rA, rB Greater-than floating point comparison

fcmp.ne rD, rA, rB Not-Equal floating point comparison

fcmp.ge rD, rA, rB Greater-or-Equal floating point comparison

0 1 0 1 1 0 rD rA rB 0 1 0 0 OpSel 0 0 0 0

0 6 11 16 21 25 28 31
184 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
Table 5-2: Floating Point Comparison Operation

Comparison Type Operand Relationship

Description OpSel (rB) > (rA) (rB) < (rA) (rB) = (rA)
isSigNaN(rA) or

isSigNaN(rB)
isQuietNaN(rA) or

isQuietNaN(rB)

Unordered 000 (rD) 0 (rD) 0 (rD) 0 (rD) 1
FSR[IO]
ESR[EC] 00110

(rD) 1

Less-than 001 (rD) 0 (rD) 1 (rD) 0 (rD) 0
FSR[IO]
ESR[EC] 00110

(rD) 0
FSR[IO]
ESR[EC] 00110

Equal 010 (rD) 0 (rD) 0 (rD) 1 (rD) 0
FSR[IO]
ESR[EC] 00110

(rD) 0

Less-or-equal 011 (rD) 0 (rD) 1 (rD) 1 (rD) 0
FSR[IO]
ESR[EC] 00110

(rD) 0
FSR[IO]
ESR[EC] 00110

Greater-than 100 (rD) 1 (rD) 0 (rD) 0 (rD) 0
FSR[IO]
ESR[EC] 00110

(rD) 0
FSR[IO]
ESR[EC] 00110

Not-equal 101 (rD) 1 (rD) 1 (rD) 0 (rD) 1
FSR[IO]
ESR[EC] 00110

(rD) 1

Greater-or-equal 110 (rD) 1 (rD) 0 (rD) 1 (rD) 0
FSR[IO]
ESR[EC] 00110

(rD) 0
FSR[IO]
ESR[EC] 00110
MicroBlaze Processor Reference Guide www.xilinx.com 185
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
flt Floating Point Convert Integer to Float

Description

Converts the signed integer in register rA to floating point and puts the result in register rD. This is
a 32-bit rounding signed conversion that will produce a 32-bit floating point result.

Pseudocode

(rD) float ((rA))

Registers Altered

 rD

Latency

 4 cycles with C_AREA_OPTIMIZED=0

 6 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

flt rD, rA

0 1 0 1 1 0 rD rA 0 0 1 0 1 0 0 0 0 0 0 0

0 6 11 16 21 31
186 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
fint Floating Point Convert Float to Integer

Description

Converts the floating point number in register rA to a signed integer and puts the result in register
rD. This is a 32-bit signed conversion that will produce a 32-bit integer result.

Pseudocode

if isDnz(rA) then
(rD) 0xFFC00000
FSR[DO] 1
ESR[EC] 00110

else if isNaN(rA) then
(rD) 0xFFC00000
FSR[IO] 1
ESR[EC] 00110

else if isInf(rA) or (rA) < -231 or (rA) > 231 - 1 then
(rD) 0xFFC00000
FSR[IO] 1
ESR[EC] 00110

else
(rD) int ((rA))

Registers Altered

 rD, unless an FP exception is generated, in which case the register is unchanged

 ESR[EC], if an FP exception is generated

 FSR[IO,DO]

Latency

 5 cycles with C_AREA_OPTIMIZED=0

 7 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

fint rD, rA

0 1 0 1 1 0 rD rA 0 0 1 1 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 187
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
fsqrt Floating Point Arithmetic Square Root

Description

Performs a floating point square root on the value in rA and puts the result in register rD.

Pseudocode

if isDnz(rA) then
(rD) 0xFFC00000
FSR[DO] 1
ESR[EC] 00110

else if isSigNaN(rA) then
(rD) 0xFFC00000
FSR[IO] 1
ESR[EC] 00110

else if isQuietNaN(rA) then
(rD) 0xFFC00000

else if (rA) < 0 then
(rD) 0xFFC00000
FSR[IO] 1
ESR[EC] 00110

else if (rA) = -0 then
(rD) -0

else
(rD) sqrt ((rA))

Registers Altered

 rD, unless an FP exception is generated, in which case the register is unchanged

 ESR[EC], if an FP exception is generated

 FSR[IO,DO]

Latency

 27 cycles with C_AREA_OPTIMIZED=0

 29 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

fsqrt rD, rA Square Root

0 1 0 1 1 0 rD rA 0 0 1 1 1 0 0 0 0 0 0 0

0 6 11 16 21 31
188 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
get get from stream interface

Description

MicroBlaze will read from the link x interface and place the result in register rD.

The get instruction has 32 variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall MicroBlaze until the data from the interface is
valid. The non-blocking versions will not stall micro blaze and will set carry to ‘0’ if the data was
valid and to ‘1’ if the data was invalid. In case of an invalid access the destination register contents
is undefined.

All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the interface to be ‘0’. If this
is not the case, the instruction will set MSR[FSL] to ‘1’. All control get instructions (when ‘c’ bit is
‘1’) expect the control bit from the interface to be ‘1’. If this is not the case, the instruction will set
MSR[FSL] to ‘1’.

The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link
index. The target register, rD, is not updated when an exception is generated, instead the data is
stored in EDR.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read signal
to the link is not asserted.

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM]=1) a Privileged Instruction exception
occurs.

tneaget rD, FSLx get data from link x
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecaget rD, FSLx get control from link x
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

0 1 1 0 1 1 rD 0 0 0 0 0 0 n c t a e 0 0 0 0 0 0 FSLx

0 6 11 16 28 31
MicroBlaze Processor Reference Guide www.xilinx.com 189
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
(rD) FSLx_S_DATA | Sx_AXIS_TDATA
if (n = 1) then
MSR[Carry] (FSLx_S_EXISTS | Sx_AXIS_TVALID)

if (FSLx_S_CONTROL | Sx_AXIS_TLAST c) and
(FSLx_S_EXISTS | Sx_AXIS_TVALID) then

MSR[FSL] 1
if (e = 1) then
ESR[EC] 00000
ESR[ESS]instruction bits [28:31]
EDR FSLx_S_DATA | Sx_AXIS_TDATA

Registers Altered

 rD, unless an exception is generated, in which case the register is unchanged

 MSR[FSL]

 MSR[Carry]

 ESR[EC], in case a stream exception or a privileged instruction exception is generated

 ESR[ESS], in case a stream exception is generated

 EDR, in case a stream exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is
set to 1, and the instruction is not atomic.

Note

To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.

The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater
than 0.

The extended instructions (exception, test and atomic versions) are only available when the
MicroBlaze parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.
190 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
getd get from stream interface dynamic

Description

MicroBlaze will read from the interface defined by the four least significant bits in rB and place the
result in register rD.

The getd instruction has 32 variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall MicroBlaze until the data from the interface is
valid. The non-blocking versions will not stall micro blaze and will set carry to ‘0’ if the data was
valid and to ‘1’ if the data was invalid. In case of an invalid access the destination register contents
is undefined.

All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the interface to be ‘0’. If this
is not the case, the instruction will set MSR[FSL] to ‘1’. All control get instructions (when ‘c’ bit is
‘1’) expect the control bit from the interface to be ‘1’. If this is not the case, the instruction will set
MSR[FSL] to ‘1’.

The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link
index. The target register, rD, is not updated when an exception is generated, instead the data is
stored in EDR.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read signal
to the link is not asserted.

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed
by setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception
occurs.

tneagetd rD, rB get data from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecagetd rD, rB get control from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

0 1 0 0 1 1 rD 0 0 0 0 0 rB 0 n c t a e 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 191
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
x rB[28:31]
(rD) FSLx_S_DATA | Sx_AXIS_TDATA
if (n = 1) then
MSR[Carry] (FSLx_S_EXISTS | Sx_AXIS_TVALID)

if (FSLx_S_CONTROL | Sx_AXIS_TLAST c) and
(FSLx_S_EXISTS | Sx_AXIS_TVALID) then

MSR[FSL] 1
if (e = 1) then
ESR[EC] 00000
ESR[ESS]rB[28:31]
EDR FSLx_S_DATA | Sx_AXIS_TDATA

Registers Altered

 rD, unless an exception is generated, in which case the register is unchanged

 MSR[FSL]

 MSR[Carry]

 ESR[EC], in case a stream exception or a privileged instruction exception is generated

 ESR[ESS], in case a stream exception is generated

 EDR, in case a stream exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.

The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater
than 0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.
192 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
idiv Integer Divide

Description

The contents of register rB is divided by the contents of register rA and the result is placed into
register rD.

If the U bit is set, rA and rB are considered unsigned values. If the U bit is clear, rA and rB are
considered signed values.

If the value of rA is 0, the DZO bit in MSR will be set and the value in rD will be 0, unless an
exception is generated.

If the U bit is clear, the value of rA is -1, and the value of rB is -2147483648, the DZO bit in MSR
will be set and the value in rD will be -2147483648, unless an exception is generated.

Pseudocode

if (rA) = 0 then
(rD) <- 0
MSR[DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 0

else if U = 0 and (rA) = -1 and (rB) = -2147483648 then
(rD) <- -2147483648
MSR[DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 1

else
(rD) (rB) / (rA)

Registers Altered

 rD, unless a divide exception is generated, in which case the register is unchanged

 MSR[DZO], if the value in rA is zero

 ESR[EC], if the value in rA is zero

Latency

 1 cycle if (rA) = 0, otherwise 32 cycles with C_AREA_OPTIMIZED=0

 1 cycle if (rA) = 0, otherwise 34 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only valid if MicroBlaze is configured to use a hardware divider (C_USE_DIV =
1).

idiv rD, rA, rB divide rB by rA (signed)

idivu rD, rA, rB divide rB by rA (unsigned)

0 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 U 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 193
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
imm Immediate

Description

The instruction imm loads the IMM value into a temporary register. It also locks this value so it can
be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B instructions have
only a 16-bit immediate value field, a 32-bit immediate value cannot be used directly. However, 32-
bit immediate values can be used in MicroBlaze. By default, Type B Instructions will take the 16-bit
IMM field value and sign extend it to 32 bits to use as the immediate operand. This behavior can be
overridden by preceding the Type B instruction with an imm instruction. The imm instruction locks
the 16-bit IMM value temporarily for the next instruction. A Type B instruction that immediately
follows the imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of
the imm instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If no
Type B instruction follows the imm instruction, the locked value gets unlocked and becomes
useless.

Latency

 1 cycle

Notes

The imm instruction and the Type B instruction following it are atomic; consequently, no interrupts
are allowed between them.

The assembler provided by Xilinx automatically detects the need for imm instructions. When a 32-
bit IMM value is specified in a Type B instruction, the assembler converts the IMM value to a 16-
bit one to assemble the instruction and inserts an imm instruction before it in the executable file.

imm IMM

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 IMM

0 6 1
1

1
6

3
1

194 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
lbu Load Byte Unsigned

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of registers rA
and rB. The data is placed in the least significant byte of register rD and the other three bytes in rD
are cleared.

If the R bit is set, a byte reversed memory location is used, loading data with the opposite endianness
of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode

Addr rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 0
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 0; ESR[DIZ] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else
(rD)[24:31] Mem(Addr)
(rD)[0:23] 0

Registers Altered

 rD, unless an exception is generated, in which case the register is unchanged

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

lbu rD, rA, rB

lbur rD, rA, rB

1 1 0 0 0 0 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 195
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
lbui Load Byte Unsigned Immediate

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of register rA
with the value in IMM, sign-extended to 32 bits. The data is placed in the least significant byte of
register rD and the other three bytes in rD are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode

Addr rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 0
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 0; ESR[DIZ] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else
(rD)[24:31] Mem(Addr)
(rD)[0:23] 0

Registers Altered

 rD, unless an exception is generated, in which case the register is unchanged

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

lbui rD, rA, IMM

1 1 1 0 0 0 rD rA IMM

0 6 11 16 31
196 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
lhu Load Halfword Unsigned

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of registers rA and rB. The data is placed in the least significant halfword of register rD and
the most significant halfword in rD is cleared.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, loading data with the opposite endianness of the endianness defined by C_ENDIANNESS
and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

Pseudocode
Addr (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 0
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 0; ESR[DIZ] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Addr[31] 0 then
ESR[EC] 00001; ESR[W] 0; ESR[S] 0; ESR[Rx] rD

else
(rD)[16:31] Mem(Addr)
(rD)[0:15] 0

Registers Altered

 rD, unless an exception is generated, in which case the register is unchanged

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

 ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

lhu rD, rA, rB

lhur rD, rA, rB

1 1 0 0 0 1 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 197
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
lhui Load Halfword Unsigned Immediate

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of register rA and the value in IMM, sign-extended to 32 bits. The data is placed in the least
significant halfword of register rD and the most significant halfword in rD is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the least significant bit
in the address is not zero.

Pseudocode

Addr (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 0
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 0; ESR[DIZ] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Addr[31] 0 then
ESR[EC] 00001; ESR[W] 0; ESR[S] 0; ESR[Rx] rD

else
(rD)[16:31] Mem(Addr)
(rD)[0:15] 0

Registers Altered

 rD, unless an exception is generated, in which case the register is unchanged

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

 ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

lhui rD, rA, IMM

1 1 1 0 0 1 rD rA IMM

0 6 11 16 31
198 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
lw Load Word

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected mode
is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode

Addr (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 0
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 0; ESR[DIZ] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Addr[30:31] 0 then
ESR[EC] 00001; ESR[W] 1; ESR[S] 0; ESR[Rx] rD

else
(rD) Mem(Addr)

Registers Altered

 rD, unless an exception is generated, in which case the register is unchanged

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

 ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

lw rD, rA, rB

lwr rD, rA, rB

1 1 0 0 1 0 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 199
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
lwi Load Word Immediate

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of register rA and the value IMM, sign-extended to 32 bits. The data is placed in register rD. A data
TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the two least
significant bits in the address are not zero.

Pseudocode

Addr (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 0
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 0; ESR[DIZ] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Addr[30:31] 0 then
ESR[EC] 00001; ESR[W] 1; ESR[S] 0; ESR[Rx] rD

else
(rD) Mem(Addr)

Registers Altered

 rD, unless an exception is generated, in which case the register is unchanged

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

 ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

lwi rD, rA, IMM

1 1 1 0 1 0 rD rA IMM

0 6 11 16 31
200 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
lwx Load Word Exclusive

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD, and the reservation bit is set. If an AXI4
interconnect with exclusive access enabled is used, and the interconnect response is not EXOKAY,
the carry flag (MSR[C]) is set; otherwise the carry flag is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception will not occur, even if the two least significant bits in the
address are not zero.

A data bus exception can occur when an AXI4 interconnect with exclusive access enabled is used,
and the interconnect response is not EXOKAY, which means that an exclusive access cannot be
handled.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for the
peripheral and cache interconnect, respectively.

Pseudocode

Addr (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 0
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 0; ESR[DIZ] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if AXI_Exclusive_Used(Addr) && AXI_Response /= EXOKAY then
ESR[EC] 00100;ESR[ECC] 0;
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else
(rD) Mem(Addr); Reservation 1;
if AXI_Exclusive_Used(Addr) && AXI_Response /= EXOKAY then
MSR[C] 1

else
MSR[C] 0

lwx rD, rA, rB

1 1 0 0 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 201
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered

 rD and MSR[C], unless an exception is generated, in which case they are unchanged

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is used together with SWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior). The
LWX instruction should not be immediately followed by an SRC instruction, to ensure the correct
value of the carry flag is obtained.
202 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
mbar Memory Barrier

Description

This instruction ensures that outstanding memory accesses on memory interfaces are completed
before any subsequent instructions are executed. This is necessary to guarantee that self-modifying
code is handled correctly, and that a DMA transfer can be safely started.

With self-modifying code, it is necessary to first use an MBAR instruction to wait for data accesses,
which can be done by setting IMM to 1, and then use another MBAR instruction to clear the Branch
Target Cache and empty the instruction prefetch buffer, which can be done by setting IMM to 2.

To ensure that data to be read by a DMA unit has been written to memory, it is only necessary to wait
for data accesses, which can be done by setting IMM to 1.

Pseudocode

if (IMM & 1) = 0 then
wait for instruction side memory accesses

if (IMM & 2) = 0 then
wait for data side memory accesses

PC PC + 4

Registers Altered

 PC

Latency

 1 + N cycles, where N is the number of cycles to wait for memory accesses to complete

Notes

This instruction must not be preceded by an imm instruction.

With XCL, there is no way for this instruction to know when data writes are complete. Hence it is
also necessary to read back the last written value in this case, to ensure that the access has
completed.

mbar IMM Memory Barrier

1 0 1 1 1 0 IMM 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 203
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
mfs Move From Special Purpose Register

Description

Copies the contents of the special purpose register rS into register rD. The special purpose registers
TLBLO and TLBHI are used to copy the contents of the Unified TLB entry indexed by TLBX.

Pseudocode

switch (rS):
case 0x0000 : (rD) PC
case 0x0001 : (rD) MSR
case 0x0003 : (rD) EAR
case 0x0005 : (rD) ESR
case 0x0007 : (rD) FSR
case 0x000B : (rD) BTR
case 0x000D : (rD) EDR
case 0x0800 : (rD) SLR
case 0x0802 : (rD) SHR
case 0x1000 : (rD) PID
case 0x1001 : (rD) ZPR
case 0x1002 : (rD) TLBX
case 0x1003 : (rD) TLBLO
case 0x1004 : (rD) TLBHI
case 0x200x : (rD) PVR[x] (where x = 0 to 11)
default : (rD) Undefined

Registers Altered

 rD

Latency

 1 cycle

Notes

To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR, rear for
EAR, resr for ESR, rfsr for FSR, rbtr for BTR, redr for EDR, rslr for SLR, rshr for SHR, rpid for
PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rpvr0 - rpvr11 for
PVR0 - PVR11.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MFS instruction to guarantee correct MSR value.

mfs rD, rS

1 0 0 1 0 1 rD 0 0 0 0 0 1 0 rS

0 6 11 16 18 31
204 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
The value read from FSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect FSR must precede the
MFS instruction to guarantee correct FSR value.

EAR, ESR and BTR are only valid as operands when at least one of the MicroBlaze
C_*_EXCEPTION parameters are set to 1.

EDR is only valid as operand when the parameter C_FSL_EXCEPTION is set to 1 and the
parameter C_FSL_LINKS is greater than 0.

FSR is only valid as an operand when the C_USE_FPU parameter is greater than 0.

SLR and SHR are only valid as an operand when the C_USE_STACK_PROTECTION parameter is
set to 1.

PID, ZPR, TLBLO and TLBHI are only valid as operands when the parameter C_USE_MMU > 1
(User Mode) and the parameter C_MMU_TLB_ACCESS = 1 (Read) or 3 (Full).

TLBX is only valid as operand when the parameter C_USE_MMU > 1 (User Mode) and the
parameter C_MMU_TLB_ACCESS > 0 (Minimal).

PVR0 is only valid as an operand when C_PVR is 1 (Basic) or 2 (Full), and PVR1 - PVR11 are only
valid as operands when C_PVR is set to 2 (Full).
MicroBlaze Processor Reference Guide www.xilinx.com 205
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
msrclr Read MSR and clear bits in MSR

Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are cleared in the MSR. Bit positions that are 0 in the IMM
value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted in
User Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 and IMM 0x4 then
ESR[EC] 00111

else
(rD) (MSR)
(MSR) (MSR)IMM))

Registers Altered

 rD

 MSR

 ESR[EC], in case a privileged instruction exception is generated

Latency

 1 cycle

Notes

MSRCLR will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed. When clearing the IE bit, it is guaranteed that the processor
will not react to any interrupt for the subsequent instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRCLR instruction to guarantee correct MSR value.

The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less than
214 otherwise. Only bits 17 to 31 of the MSR can be cleared when C_USE_MMU >= 1 (User Mode),
and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When clearing MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

msrclr rD, Imm

1 0 0 1 0 1 rD 1 0 0 0 1 0 Imm15

0 6 11 16 17 31
206 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
msrset Read MSR and set bits in MSR

Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are set in the MSR. Bit positions that are 0 in the IMM
value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted in
User Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 and IMM 0x4 then
ESR[EC] 00111

else
(rD) (MSR)
(MSR) (MSR) (IMM)

Registers Altered

 rD

 MSR

 ESR[EC], in case a privileged instruction exception is generated

Latency

 1 cycle

Notes

MSRSET will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRSET instruction to guarantee correct MSR value.

The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less than
214 otherwise. Only bits 17 to 31 of the MSR can be set when C_USE_MMU >= 1 (User Mode),
and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When setting MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

msrset rD, Imm

1 0 0 1 0 1 rD 1 0 0 0 0 0 Imm15

0 6 11 16 17 31
MicroBlaze Processor Reference Guide www.xilinx.com 207
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
mts Move To Special Purpose Register

Description

Copies the contents of register rD into the special purpose register rS. The special purpose registers
TLBLO and TLBHI are used to copy to the Unified TLB entry indexed by TLBX.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
switch (rS)

 case 0x0001 : MSR (rA)
 case 0x0007 : FSR (rA)

case 0x0800 : SLR (rA)
case 0x0802 : SHR (rA)
case 0x1000 : PID (rA)

 case 0x1001 : ZPR (rA)
 case 0x1002 : TLBX (rA)
 case 0x1003 : TLBLO (rA)
 case 0x1004 : TLBHI (rA)
 case 0x1005 : TLBSX (rA)

Registers Altered

 rS

 ESR[EC], in case a privileged instruction exception is generated

Latency

 1 cycle

Notes

When writing MSR using MTS, all bits take effect one cycle after the instruction has been executed.
An MTS instruction writing MSR should never be followed back-to-back by an instruction that uses
the MSR content. When clearing the IE bit, it is guaranteed that the processor will not react to any
interrupt for the subsequent instructions. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent instructions.

To refer to special purpose registers in assembly language, use rmsr for MSR, rfsr for FSR, rslr for
SLR, rshr for SHR, rpid for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX,
and rtlbsx for TLBSX.

The PC, ESR, EAR, BTR, EDR and PVR0 - PVR11 cannot be written by the MTS instruction.

The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is greater than 0.

mts rS, rA

1 0 0 1 0 1 0 0 0 0 0 rA 1 1 rS

0 6 11 16 18 31
208 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
The SLR and SHR are only valid as a destination if the MicroBlaze parameter
C_USE_STACK_PROTECTION is set to 1.

PID, ZPR and TLBSX are only valid as destinations when the parameter C_USE_MMU > 1 (User
Mode) and the parameter C_MMU_TLB_ACCESS > 1 (Read). TLBLO, TLBHI and TLBX are only
valid as destinations when the parameter C_USE_MMU > 1 (User Mode).

When changing MSR[VM] or PID the instruction must always be followed by a synchronizing
branch instruction, for example BRI 4.
MicroBlaze Processor Reference Guide www.xilinx.com 209
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
mul Multiply

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit multiplication that will produce a 64-bit result. The least significant word of this value is
placed in rD. The most significant word is discarded.

Pseudocode

(rD) LSW((rA) (rB))

Registers Altered

 rD

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 3 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.

mul rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

210 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
mulh Multiply High

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit signed multiplication that will produce a 64-bit result. The most significant word of this value
is placed in rD. The least significant word is discarded.

Pseudocode

(rD) MSW((rA) (rB)), signed

Registers Altered

 rD

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 3 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULH is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the
two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual
values were not relevant.

mulh rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 1

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 211
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
mulhu Multiply High Unsigned

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit unsigned multiplication that will produce a 64-bit unsigned result. The most significant word
of this value is placed in rD. The least significant word is discarded.

Pseudocode

(rD) MSW((rA) (rB)), unsigned

Registers Altered

 rD

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 3 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.

mulhu rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 1 1

0 6 1
1

1
6

2
1

3
1

212 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
mulhsu Multiply High Signed Unsigned

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit
signed by 32-bit unsigned multiplication that will produce a 64-bit signed result. The most
significant word of this value is placed in rD. The least significant word is discarded.

Pseudocode

(rD) MSW((rA), signed (rB), unsigned), signed

Registers Altered

 rD

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 3 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHSU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.

mulhsu rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 1 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 213
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
muli Multiply Immediate

Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and puts the
result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-bit result. The
least significant word of this value is placed in rD. The most significant word is discarded.

Pseudocode

(rD) LSW((rA) sext(IMM))

Registers Altered

 rD

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 3 cycles with C_AREA_OPTIMIZED=1

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.

muli rD, rA, IMM

0 1 1 0 0 0 rD rA IMM

0 6 1
1

1
6

3
1

214 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
or Logical OR

Description

The contents of register rA are ORed with the contents of register rB; the result is placed into
register rD.

Pseudocode

(rD) (rA) (rB)

Registers Altered

 rD

Latency

 1 cycle

or rD, rA, rB

1 0 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 215
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
ori Logical OR with Immediate

Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode

(rD) (rA) sext(IMM)

Registers Altered

 rD

Latency

 1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

ori rD, rA, IMM

1 0 1 0 0 0 rD rA IMM

0 6 1
1

1
6

3
1

216 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
pcmpbf Pattern Compare Byte Find

Description

The contents of register rA is bytewise compared with the contents in register rB.

 rD is loaded with the position of the first matching byte pair, starting with MSB as position 1,
and comparing until LSB as position 4

 If none of the byte pairs match, rD is set to 0

Pseudocode

if rB[0:7] = rA[0:7] then
(rD) 1

else
if rB[8:15] = rA[8:15] then
(rD) 2

else
if rB[16:23] = rA[16:23] then
(rD) 3

else
if rB[24:31] = rA[24:31] then
(rD) 4

else
(rD) 0

Registers Altered

 rD

Latency

 1 cycle

Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpbf rD, rA, rB bytewise comparison returning position of first
match

1 0 0 0 0 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 217
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
pcmpeq Pattern Compare Equal

Description

The contents of register rA is compared with the contents in register rB.

 rD is loaded with 1 if they match, and 0 if not

Pseudocode

if (rB) = (rA) then
(rD) 1

else
(rD) 0

Registers Altered

 rD

Latency

 1 cycle

Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpeq rD, rA, rB equality comparison with a positive boolean
result

1 0 0 0 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

218 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
pcmpne Pattern Compare Not Equal

Description

The contents of register rA is compared with the contents in register rB.

 rD is loaded with 0 if they match, and 1 if not

Pseudocode

if (rB) = (rA) then
(rD) 0

else
(rD) 1

Registers Altered

 rD

Latency

 1 cycle

Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpne rD, rA, rB equality comparison with a negative boolean
result

1 0 0 0 1 1 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 219
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
put Put to stream interface

Description

MicroBlaze will write the value from register rA to the link x interface.

The put instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was
available and to ‘1’ if no space was available.

All data put instructions (when ‘c’ is ‘0’) will set the control bit to the interface to ‘0’ and all control
put instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write signal
to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception
occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
(FSLx_M_DATA | Mx_AXIS_TDATA) (rA)
if (n = 1) then
MSR[Carry]
(FSLx_M_FULL | Mx_AXIS_TVALID Mx_AXIS_TREADY)

(FSLx_M_CONTROL | Mx_AXIS_TLAST) C

naput rA, FSLx put data to link x
n = non-blocking
a = atomic

tnaput FSLx put data to link x test-only
n = non-blocking
a = atomic

ncaput rA, FSLx put control to link x
n = non-blocking
a = atomic

tncaput FSLx put control to link x test-only
n = non-blocking
a = atomic

0 1 1 0 1 1 0 0 0 0 0 rA 1 n c t a 0 0 0 0 0 0 0 FSLx

0 6 11 16 28 31
220 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
Registers Altered

 MSR[Carry]

 ESR[EC], in case a privileged instruction exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is
set to 1, and the instruction is not atomic.

Note

To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater
than 0.

The extended instructions (atomic versions) are only available when the MicroBlaze parameter
C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.
MicroBlaze Processor Reference Guide www.xilinx.com 221
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
putd Put to stream interface dynamic

Description

MicroBlaze will write the value from register rA to the link interface defined by the four least
significant bits in rB. The putd instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was
available and to ‘1’ if no space was available.

All data putd instructions (when ‘c’ is ‘0’) will set the control bit to the interface to ‘0’ and all
control putd instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write signal
to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception
occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
x rB[28:31]
(FSLx_M_DATA | Mx_AXIS_TDATA) (rA)
if (n = 1) then
MSR[Carry]
(FSLx_M_FULL | Mx_AXIS_TVALID Mx_AXIS_TREADY)

(FSLx_M_CONTROL | Mx_AXIS_TLAST) C

naputd rA, rB put data to link rB[28:31]
n = non-blocking
a = atomic

tnaputd rB put data to link rB[28:31] test-only
n = non-blocking
a = atomic

ncaputd rA, rB put control to link rB[28:31]
n = non-blocking
a = atomic

tncaputd rB put control to link rB[28:31] test-only
n = non-blocking
a = atomic

0 1 0 0 1 1 0 0 0 0 0 rA rB 1 n c t a 0 0 0 0 0 0

0 6 11 16 21 31
222 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
Registers Altered

 MSR[Carry]

 ESR[EC], in case a privileged instruction exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater
than 0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.
MicroBlaze Processor Reference Guide www.xilinx.com 223
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
rsub Arithmetic Reverse Subtract

Description

The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsubk.
Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsubc. Both bits are
set to one for the mnemonic rsubkc.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub, rsubc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsubc, rsubkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the content of the carry
flag does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode

if C = 0 then
(rD) (rB) + (rA) + 1

else
(rD) (rB) + (rA) + MSR[C]

if K = 0 then
MSR[C] CarryOut

Registers Altered

 rD

 MSR[C]

Latency

 1 cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.

rsub rD, rA, rB Subtract

rsubc rD, rA, rB Subtract with Carry

rsubk rD, rA, rB Subtract and Keep Carry

rsubkc rD, rA, rB Subtract with Carry and Keep Carry

0 0 0 K C 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

224 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
rsubi Arithmetic Reverse Subtract Immediate

Description

The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits, and the
result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for
the mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the
mnemonic rsubic. Both bits are set to one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi, rsubic), then
the carry flag will be affected by the execution of the instruction. When bit 4 of the instruction is set
to one (rsubic, rsubikc), the content of the carry flag (MSR[C]) affects the execution of the
instruction. When bit 4 is cleared (rsubi, rsubik), the content of the carry flag does not affect the
execution of the instruction (providing a normal subtraction).

Pseudocode

if C = 0 then
(rD) sext(IMM) + (rA) + 1

else
(rD) sext(IMM) + (rA) + MSR[C]

if K = 0 then
MSR[C] CarryOut

Registers Altered

 rD

 MSR[C]

Latency

 1 cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow. By default, Type B
Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use as the immediate
operand. This behavior can be overridden by preceding the Type B instruction with an imm
instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate values.

rsubi rD, rA, IMM Subtract Immediate

rsubic rD, rA, IMM Subtract Immediate with Carry

rsubik rD, rA, IMM Subtract Immediate and Keep Carry

rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry

0 0 1 K C 1 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 225
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
rtbd Return from Break
rn from Interrupt

Description

Return from break will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. It will also enable breaks after execution by clearing the BIP flag in the
MSR.

This instruction always has a delay slot. The instruction following the RTBD is always executed
before the branch target. That delay slot instruction has breaks disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
PC (rA) sext(IMM)
allow following instruction to complete execution
MSR[BIP] 0
MSR[UM] MSR[UMS]
MSR[VM] MSR[VMS]

Registers Altered

 PC

 MSR[BIP], MSR[UM], MSR[VM]

 ESR[EC], in case a privileged instruction exception is generated

Latency

 2 cycles

Note

Convention is to use general purpose register r16 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

rtbd rA, IMM

1 0 1 1 0 1 1 0 0 1 0 rA IMM

0 6 11 16 31
226 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
rtid Return from Interrupt
rn from Interrupt

Description

Return from interrupt will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always executed
before the branch target. That delay slot instruction has interrupts disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
PC (rA) sext(IMM)
allow following instruction to complete execution
MSR[IE] 1
MSR[UM] MSR[UMS]
MSR[VM] MSR[VMS]

Registers Altered

 PC

 MSR[IE], MSR[UM], MSR[VM]

 ESR[EC], in case a privileged instruction exception is generated

Latency

 2 cycles

Note

Convention is to use general purpose register r14 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

rtid rA, IMM

1 0 1 1 0 1 1 0 0 0 1 rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 227
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
rted Return from Exception

Description

Return from exception will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. The instruction will also enable exceptions after execution.

This instruction always has a delay slot. The instruction following the RTED is always executed
before the branch target.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
PC (rA) sext(IMM)
allow following instruction to complete execution
MSR[EE] 1
MSR[EIP] 0
MSR[UM] MSR[UMS]
MSR[VM] MSR[VMS]
ESR

Registers Altered

 PC

 MSR[EE], MSR[EIP], MSR[UM], MSR[VM]

 ESR

Latency

 2 cycles

Note

Convention is to use general purpose register r17 as rA. This instruction requires that one or more of
the MicroBlaze parameters C_*_EXCEPTION are set to 1 or that C_USE_MMU > 0.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

The instruction should normally not be used when MSR[EE] is set, since if the instruction in the
delay slot would cause an exception, the exception handler would be entered with exceptions
enabled.

Note: Code returning from an exception must first check if MSR[DS] is set, and in that case return
to the address in BTR.

rted rA, IMM

1 0 1 1 0 1 1 0 1 0 0 rA IMM

0 6 11 16 31
228 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
rtsd Return from Subroutine

Description

Return from subroutine will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always executed
before the branch target.

Pseudocode

PC (rA) sext(IMM)
allow following instruction to complete execution

Registers Altered

 PC

Latency

 1 cycle (if successful branch prediction occurs)

 2 cycles (with Branch Target Cache disabled)

 3 cycles (if branch prediction mispredict occurs)

Note

Convention is to use general purpose register r15 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

rtsd rA, IMM

1 0 1 1 0 1 1 0 0 0 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 229
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
sb Store Byte

Description

Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of registers rA and rB.

If the R bit is set, a byte reversed memory location is used, storing data with the opposite endianness
of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode

Addr (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 1; ESR[DIZ] No-access-allowed
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else
Mem(Addr) rD)[24:31]

Registers Altered

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

sb rD, rA, rB

sbr rD, rA, rB

1 1 0 1 0 0 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
230 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
sbi Store Byte Immediate

Description

Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of register rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode

Addr (rA) sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 1; ESR[DIZ] No-access-allowed
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else
Mem(Addr) rD)[24:31]

Registers Altered

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

sbi rD, rA, IMM

1 1 1 1 0 0 rD rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 231
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
sext16 Sign Extend Halfword

Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be copied
into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode

(rD)[0:15] (rA)[16]
(rD)[16:31] (rA)[16:31]

Registers Altered

 rD

Latency

 1 cycle

sext16 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 6 1
1

1
6

3
1

232 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
sext8 Sign Extend Byte

Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied into bits
0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD)[0:23] (rA)[24]
(rD)[24:31] (rA)[24:31]

Registers Altered

 rD

Latency

 1 cycle

sext8 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 233
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
sh Store Halfword

Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of registers rA and rB.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, storing data with the opposite endianness of the endianness defined by C_ENDIANNESS
and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

Pseudocode

Addr (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 1; ESR[DIZ] No-access-allowed
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Addr[31] 0 then
ESR[EC] 00001; ESR[W] 0; ESR[S] 1; ESR[Rx] rD

else
Mem(Addr) (rD)[16:31]

Registers Altered

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

 ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

sh rD, rA, rB

shr rD, rA, rB

1 1 0 1 0 1 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
234 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
shi Store Halfword Immediate

Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of register rA and the value IMM, sign-extended to 32
bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if virtual
protected mode is enabled, and access is prevented by no-access-allowed or read-only zone
protection. No-access-allowed can only occur in user mode. An unaligned data access exception
occurs if the least significant bit in the address is not zero.

Pseudocode

Addr (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 1; ESR[DIZ] No-access-allowed
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Addr[31] 0 then
ESR[EC] 00001; ESR[W] 0; ESR[S] 1; ESR[Rx] rD

else
Mem(Addr) rD)[16:31]

Registers Altered

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

 ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

shi rD, rA, IMM

1 1 1 1 0 1 rD rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 235
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
sra Shift Right Arithmetic

Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the result in rD. The
most significant bit of rA (that is, the sign bit) placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] (rA)]
(rD)[1:31] (rA)[0:30]
MSR[C] (rA)[31]

Registers Altered

 rD

 MSR[C]

Latency

 1 cycle

sra rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 6 1
1

1
6

3
1

236 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
src Shift Right with Carry

Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] MSR[C]
(rD)[1:31] rA)[0:30]
MSR[C] (rA)[31]

Registers Altered

 rD

 MSR[C]

Latency

 1 cycle

src rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 237
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
srl Shift Right Logical

Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] 0
(rD)[1:31] rA)[0:30]
MSR[C] (rA)[31]

Registers Altered

 rD

 MSR[C]

Latency

 1 cycle

srl rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 6 1
1

1
6

3
1

238 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
sw Store Word

Description

Stores the contents of register rD, into the word aligned memory location that results from adding
the contents of registers rA and rB.

If the R bit is set, the bytes in the stored word are reversed , storing data with the opposite endianness
of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode

Addr (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 1; ESR[DIZ] No-access-allowed
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Addr[30:31] 0 then
ESR[EC] 00001; ESR[W] 1; ESR[S] 1; ESR[Rx] rD

else
Mem(Addr) rD)[0:31]

Registers Altered

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

 ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

sw rD, rA, rB

swr rD, rA, rB

1 1 0 1 1 0 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 239
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
swi Store Word Immediate

Description

Stores the contents of register rD, into the word aligned memory location that results from adding
the contents of registers rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode

Addr (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 1; ESR[DIZ] No-access-allowed
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Addr[30:31] 0 then
ESR[EC] 00001; ESR[W] 1; ESR[S] 1; ESR[Rx] rD

else
Mem(Addr) (rD)[0:31]

Register Altered

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

 ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

swi rD, rA, IMM

1 1 1 1 1 0 rD rA IMM

0 6 11 16 31
240 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
swx Store Word Exclusive

Description

Conditionally stores the contents of register rD, into the word aligned memory location that results
from adding the contents of registers rA and rB. If an AXI4 interconnect with exclusive access
enabled is used, the store occurs if the interconnect response is EXOKAY, and the reservation bit is
set; otherwise the store occurs when the reservation bit is set. The carry flag (MSR[C]) is set if the
store does not occur, otherwise it is cleared. The reservation bit is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception will not occur even if the two least significant bits in the address
are not zero.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for the
peripheral and cache interconnect, respectively.

Pseudocode

Addr (rA) + (rB)
if Reservation = 0 then
MSR[C] 1

else
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] 10010;ESR[S] 1
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] 10000;ESR[S] 1; ESR[DIZ] No-access-allowed
MSR[UMS] MSR[UM]; MSR[VMS] MSR[VM]; MSR[UM] 0; MSR[VM] 0

else
Reservation
if AXI_Exclusive_Used(Addr) && AXI_Response /= EXOKAY then
MSR[C]

else
Mem(Addr) rD)[0:31]
MSR[C]

swx rD, rA, rB

1 1 0 1 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 241
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered

 MSR[C], unless an exception is generated

 MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

 ESR[EC], ESR[S], if an exception is generated

 ESR[DIZ], if a data storage exception is generated

Latency

 1 cycle with C_AREA_OPTIMIZED=0

 2 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is used together with LWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior). The
SWX instruction should not be immediately followed by an SRC instruction, to ensure the correct
value of the carry flag is obtained.
242 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
wdc Write to Data Cache

Description

Write into the data cache tag to invalidate or flush a cache line. The mnemonic wdc.flush is used to
set the F bit, and wdc.clear is used to set the T bit.

When C_DCACHE_USE_WRITEBACK is set to 1, the instruction will flush the cache line and
invalidate it if the F bit is set, otherwise it will only invalidate the cache line and discard any data
that has not been written to memory. If the T bit is set, only a cache line with a matching address is
invalidated. Register rA added with rB is the address of the affected cache line.

When C_DCACHE_USE_WRITEBACK is cleared to 0, the instruction will always invalidate the
cache line. Register rA contains the address of the affected cache line, and the register rB value is
not used.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) the instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
if C_DCACHE_USE_WRITEBACK = 1 then
address (Ra) + (Rb)

else
address (Ra)

if C_DCACHE_LINE_LEN = 4 then
cacheline_mask (1 << log2(C_DCACHE_BYTE_SIZE) - 4) - 1
cacheline (DCache Line)[(address >> 4) cacheline_mask]
cacheline_addr address xfffffff0

if C_DCACHE_LINE_LEN = 8 then
cacheline_mask (1 << log2(C_DCACHE_BYTE_SIZE) - 5) - 1
cacheline (DCache Line)[(address >> 5) cacheline_mask]
cacheline_addr address xffffffe0

if F = 1 and cacheline.Dirty then
for i 0 .. C_DCACHE_LINE_LEN - 1 loop
if cacheline.Valid[i] then
Mem(cacheline_addr + i * 4) cacheline.Data[i]

if T = 0 then
cacheline.Tag 0

else if cacheline.Address = cacheline_addr then
cacheline.Tag 0

wdc
wdc.flush
wdc.clear

rA,rB
rA,rB
rA,rB

1 0 0 1 0 0 0 0 0 0 0 rA rB 0 0 0 0 1 1 F 0 1 T 0

0 6 1
1

1
6

2
7

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 243
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered

 ESR[EC], in case a privileged instruction exception is generated

Latency

 2 cycles for wdc.clear

 2 cycles for wdc with C_AREA_OPTIMIZED=1

 3 cycles for wdc with C_AREA_OPTIMIZED=0

 2 + N cycles for wdc.flush, where N is the number of clock cycles required to flush the cache
line to memory when necessary

Note

The wdc, wdc.flush and wdc.clear instructions are independent of data cache enable (MSR[DCE]),
and can be used either with the data cache enabled or disabled.

The wdc.clear instruction is intended to invalidate a specific area in memory, for example a buffer to
be written by a Direct Memory Access device. Using this instruction ensures that other cache lines
are not inadvertently invalidated, erroneously discarding data that has not yet been written to
memory.

The address of the affected cache line is always the physical address, independent of the parameter
C_USE_MMU and whether the MMU is in virtual mode or real mode.

When using wdc.flush in a loop to flush the entire cache, the loop can be optimized by using Ra as
the cache base address and Rb as the loop counter:

addik r5,r0,C_DCACHE_BASEADDR
addik r6,r0,C_DCACHE_BYTE_SIZE-C_DCACHE_LINE_LEN*4

loop: wdc.flush r5,r6
bgtid r6,loop
addik r6,r6,-C_DCACHE_LINE_LEN*4

When using wdc.clear in a loop to invalidate a memory area in the cache, the loop can be optimized
by using Ra as the memory area base address and Rb as the loop counter:

addik r5,r0,memory_area_base_address
addik r6,r0,memory_area_byte_size-C_DCACHE_LINE_LEN*4

loop: wdc.clear r5,r6
bgtid r6,loop
addik r6,r6,-C_DCACHE_LINE_LEN*4
244 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
wic Write to Instruction Cache

Description

Write into the instruction cache tag to invalidate a cache line. The register rB value is not used.
Register rA contains the address of the affected cache line.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] 00111

else
if C_ICACHE_LINE_LEN = 4 then
cacheline_mask (1 << log2(C_CACHE_BYTE_SIZE) - 4) - 1
(ICache Line)[((Ra) >> 4) cacheline_mask].Tag 0

if C_ICACHE_LINE_LEN = 8 then
cacheline_mask (1 << log2(C_CACHE_BYTE_SIZE) - 5) - 1
(ICache Line)[((Ra) >> 5) cacheline_mask].Tag 0

Registers Altered

 ESR[EC], in case a privileged instruction exception is generated

Latency

 2 cycles

Note

The WIC instruction is independent of instruction cache enable (MSR[ICE]), and can be used either
with the instruction cache enabled or disabled.

The address of the affected cache line is always the physical address, independent of the parameter
C_USE_MMU and whether the MMU is in virtual mode or real mode.

wic rA,rB

1 0 0 1 0 0 0 0 0 0 0 rA rB 0 0 0 0 1 1 0 1 0 0 0

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 245
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
xor Logical Exclusive OR

Description

The contents of register rA are XORed with the contents of register rB; the result is placed into
register rD.

Pseudocode

(rD) (rA) (rB)

Registers Altered

 rD

Latency

 1 cycle

xor rD, rA, rB

1 0 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

246 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Instructions
xori Logical Exclusive OR with Immediate

Description

The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register
rA are XOR’ed with the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) (rA) sext(IMM)

Registers Altered

 rD

Latency

 1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 194 for details on using 32-bit immediate
values.

xori rD, rA, IMM

1 0 1 0 1 0 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 247
UG081 (v13.3)

http://www.xilinx.com

Chapter 5: MicroBlaze Instruction Set Architecture
248 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

Appendix A

Additional Resources

EDK Documentation
The following documents are available in your EDK installation. You can also access the entire
documentation set online at http://www.xilinx.com/ise/embedded/edk_docs.htm.

Relevant individual documents are liked below.

 EDK Concepts, Tools, and Techniques (UG683)
Note: The accompanying design files are in edk_ctt.zip.

 Embedded System Tools Reference Manual (UG111)

 Platform Specification Format Reference Manual (UG642)

 XPS Help

 SDK Help

 PowerPC 405 Processor Reference Guide (UG011)

Additional Resources
The following lists some of the resources you can access directly using the provided URLs.

 The entire set of GNU manuals:
 http://www.gnu.org/manual

 Xilinx Data Sheets:
http://www.xilinx.com/support/documentation/data_sheets.htm

 Xilinx Problem Solvers:
http://www.xilinx.com/support/troubleshoot/psolvers.htm

 Xilinx ISE® Manuals:
http://www.xilinx.com/support/software_manuals.htm

 Additional Xilinx Documentation:
http://www.xilinx.com/support/library.htm

 Xilinx Glossary:
 http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf

 Xilinx Documentation:
 http://www.xilinx.com/support/documentation

 Xilinx Support:
 http://www.xilinx.com/support
MicroBlaze Processor Reference Guide www.xilinx.com 249
UG081 (v13.3)

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=global_glossary
http://www.gnu.org/manual
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.3&topic=sw+manuals
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.3&topic=edk+docs
https://secure.xilinx.com/webreg/clickthrough.do?cid=150312&license=RefDesLicense
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.3&topic=sw+manuals&sub=est_rm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.3&topic=sw+manuals&sub=edk_ctt.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.3&topic=sw+manuals&sub=psf_rm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.3&topic=sw+manuals&sub=platform_studio/platform_studio_start.htm
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.3&topic=sw+manuals&sub=SDK_Doc/index.html
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=problem+solvers
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.3&topic=sw+manuals
http://www.xilinx.com/support/library.htm

250 www.xilinx.com MicroBlaze Processor Reference Guide
UG081 (v13.3)

http://www.xilinx.com

	MicroBlaze Processor Reference Guide
	Revision History
	Table of Contents
	Introduction
	Guide Contents
	Conventions
	Typographical
	Online Document

	MicroBlaze Architecture
	Overview
	Features

	Data Types and Endianness
	Instructions
	Instruction Summary
	Semaphore Synchronization
	Self-modifying Code

	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter (PC)
	Machine Status Register (MSR)
	Exception Address Register (EAR)
	Exception Status Register (ESR)
	Branch Target Register (BTR)
	Floating Point Status Register (FSR)
	Exception Data Register (EDR)
	Stack Low Register (SLR)
	Stack High Register (SHR)
	Process Identifier Register (PID)
	Zone Protection Register (ZPR)
	Translation Look-Aside Buffer Low Register (TLBLO)
	Translation Look-Aside Buffer High Register (TLBHI)
	Translation Look-Aside Buffer Index Register (TLBX)
	Translation Look-Aside Buffer Search Index Register (TLBS X)
	Processor Version Register (PVR)

	Pipeline Architecture
	Three Stage Pipeline
	Five Stage Pipeline
	Branches

	Memory Architecture
	Privileged Instructions
	Virtual-Memory Management
	Real Mode
	Virtual Mode
	Translation Look-Aside Buffer
	Access Protection
	UTLB Management
	Recording Page Access and Page Modification

	Reset, Interrupts, Exceptions, and Break
	Reset
	Hardware Exceptions
	Breaks
	Interrupt
	User Vector (Exception)

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Instruction Cache Software Support

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Data Cache Software Support

	Floating Point Unit (FPU)
	Overview
	Format
	Rounding
	Operations
	Exceptions
	Software Support

	Stream Link Interfaces
	Hardware Acceleration

	Debug and Trace
	Debug Overview
	Trace Overview

	Fault Tolerance
	Configuration
	Features
	Software Support
	Scrubbing
	Use Cases

	Lockstep Operation
	System Configuration
	Use Cases

	MicroBlaze Signal Interface Description
	Overview
	Features

	MicroBlaze I/O Overview
	AXI4 Interface Description
	Memory Mapped Interfaces
	Stream Interfaces

	Processor Local Bus (PLB) Interface Description
	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	LMB Transactions
	Read and Write Data Steering

	Fast Simplex Link (FSL) Interface Description
	Master FSL Signal Interface
	Slave FSL Signal Interface
	FSL Transactions
	Direct FSL Connections

	Xilinx CacheLink (XCL) Interface Description
	CacheLink Signal Interface
	CacheLink Transactions

	Lockstep Interface Description
	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	MicroBlaze Application Binary Interface
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small Data Area
	Data Area
	Common Un-Initialized Area
	Literals or Constants

	Interrupt and Exception Handling

	MicroBlaze Instruction Set Architecture
	Notation
	Formats
	Instructions
	add
	addi
	and
	andi
	andn
	andni
	beq
	beqi
	bge
	bgei
	bgt
	bgti
	ble
	blei
	blt
	blti
	bne
	bnei
	br
	bri
	brk
	brki
	bs
	bsi
	clz
	cmp
	fadd
	frsub
	fmul
	fdiv
	fcmp
	flt
	fint
	fsqrt
	get
	getd
	idiv
	imm
	lbu
	lbui
	lhu
	lhui
	lw
	lwi
	lwx
	mbar
	mfs
	msrclr
	msrset
	mts
	mul
	mulh
	mulhu
	mulhsu
	muli
	or
	ori
	pcmpbf
	pcmpeq
	pcmpne
	put
	putd
	rsub
	rsubi
	rtbd
	rtid
	rted
	rtsd
	sb
	sbi
	sext16
	sext8
	sh
	shi
	sra
	src
	srl
	sw
	swi
	swx
	wdc
	wic
	xor
	xori

	Additional Resources
	EDK Documentation
	Additional Resources

