
Digital Digital SystemsSystems ModelingModeling

ChapterChapter 22
VHDLVHDL--BasedBased DesignDesign

Alain Vachoux
Microelectronic Systems Laboratory

alain.vachoux@epfl.ch

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-2

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 22

ChapterChapter 2: Table 2: Table ofof contentscontents

♦ VHDL overview

♦ Synthesis with VHDL

♦ Test bench models & verification techniques

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-3

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 33

VHDL highlights (1/2)VHDL highlights (1/2)

♦ Hardware description language
• Digital hardware systems
• Modeling, simulation, synthesis, documentation
• IEEE standard 1076 (1987, 1993, 2002)

♦ Originally created for simulation
• IEEE standards 1164 (STD_LOGIC) and 1076.4 (VITAL)

♦ Further adapted to synthesis
• Language subset
• IEEE standards 1076.3 (packages) and 1076.6 (RTL semantics)

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-4

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 44

VHDL highlights (2/2)VHDL highlights (2/2)

♦ Application domain (abstraction levels): Functional -> logic

♦ Modularity
• 5 design entities: entity, architecture, package declaration and body,

configuration
• Separation of interface from implementation
• Separate compilation

♦ Strong typing
• Every object has a type
• Type compatibility checked at compile time

♦ Extensibility: User-defined types

♦ Model of time
• Discrete time, integer multiple of some MRT (Minimum Resolvable Time)

♦ Event-driven simulation semantics

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-5

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 55

VHDLVHDL--basedbased design design flowflow

RTL model

Editor
(text or graphic)

Test bench models

Logic/RTL
synthesis

Logic
simulation

VHDL packages

Constraints
(area, timing, power)

Standard cell
library

VHDL VITAL
standard cell

modeld
Gate-level

netlist

Place & route

LayoutDelay
extraction

SDF file

The VHDL-based design flow starts from a description of the system as a RTL model. Complex behavior is
described as finite state machines or Boolean equations. The RTL model may use external declarations from
standard or user-defined packages. The RTL model can be written using a text editor or using a graphical editor
supporting flow charts, finite state machines or dataflow representations.
The RTL model can be validated through logic simulation using a VHDL test bench. The test bench declares the
design entity to test and stimulus to apply to the unit under test. System functions can then be validated before any
realization is actually available.
The RTL model can then be synthesized using a logic synthesizer. The tool is able to derive an optimized gate-
level netlist using logic gates from a standard cell library. The optimization is driven by user-defined constraints
on area, timings and/or power consumption. The constraints are not included in the VHDL model, but specified
separately in the synthesis tool environment. The standard cell library includes information on all the available
cells in some technological process (e.g. 0.35µ CMOS): logic functions, areas, timing delays, power consumption.
The library format is tool dependent.
The gate-level netlist can be described in many forms depending on what to do next. A VHDL version of it is
usually used for logic simulation. VHDL models of standard cells are provided by the technology provider
(foundry or FPGA vendor) in the form of VITAL models. VITAL is an IEEE standard that defines how VHDL
models of cells must be written to allow interoperability between different simulation environments. The logic
simulation of gate-level netlists now takes care of cell delays and possibly estimated interconnect delays.
The generation of layout is done with a place and route tool that usually requires a description of the gate-level
netlist in a different form (e.g. in Verilog, EDIF or XNF). As layout includes true geometrical information, it is
possible to extract the values of parasitic R and C elements from wire shapes and to compute timing delays. These
delays are stored in the SDF (Standard Delay Format) format and can be back-annotated in VITAL VHDL
models of the standard cells. Logic simulation can now take care of more realistic interconnect delays and can be
accurate enough to avoid the need to do time consuming circuit-level (SPICE) simulations.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-6

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 66

VHDL design unitsVHDL design units

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-7

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 77

Design entityDesign entity

{ context-clause }
entity entity-name is

[generic (parameter-list) ;]
[port (port-list) ;]
[local-declarations]

[begin
{ passive-concurrent-statement }]

end [entity] [entity-name] ;

architecture arch-name of entity-name is
[local-declarations]

begin
{ concurrent-statement }

end [architecture] [arch-name] ;

type, subtype
constant

signal
subprogram

concurrent procedure call
assertion
passive process

type, subtype
constant, file

signal
subprogram

component declaration

concurrent signal assignment
process
concurrent procedure call
assertion
component instance
generate statement

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-8

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 88

Design librariesDesign libraries

♦ Context clause:

♦ Library names are logical names
• Association to physical locations done outside the VHDL model

♦ Predefined libraries
• WORK
• STD (incl. STANDARD & TEXTIO packages)

♦ Implicit context clause:

♦ Clause usage
• STANDARD package defines the type integer
• Variable declaration with full path:

• Variable declaration using context clause:

library library-name {, …} ;
use selection {, …} ;

library std, work;
use std.standard.all;

variable v: std.standard.integer;

variable v: integer;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-9

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 99

Entity declarationEntity declaration

entity entity-name is
[generic (parameter-list) ;]
[port (port-list) ;]
[local-declarations]

[begin
{ passive-concurrent-statement }]

end [entity] [entity-name] ;

generic (
param-name {, …} : param-type [:= default-value] ;
…
param-name {, …} : param-type [:= default-value]) ;

port (
[signal] signal-name {, …} : mode signal-type ;
…
[signal] signal-name {, …} : mode signal-type) ;

♦ Example: 1-bit full adder

entity add1 is
generic (

TP: time := 0 ns); -- propagation time
port (

signal opa, opb, cin: in bit; -- input operands & carry
signal sum, cout: out bit); -- output sum & carry

end entity add1;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-10

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1010

Architecture body (1/3)Architecture body (1/3)

♦ Example: 1-bit full adder, dataflow (concurrent) behavior
• Design entity: add1(dfl)

architecture arch-name of entity-name is
[local-declarations]

begin
{ concurrent-statement }

end [architecture] [arch-name] ;

() () ()
in

out in in
S A B C

C A B A C B C
= ⊕ ⊕
= + +i i i

architecture dfl of add1 is
begin

sum <= opa xor opb xor cin after TP;
cout <= (opa and opb) or (opa and cin) or (opb and cin) after TP;

end architecture dfl;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-11

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1111

Architecture body (2/3)Architecture body (2/3)

♦ Example: 1-bit full adder, sequential behavior
• Design entity: add1(algo)

architecture algo of add1 is
begin

process (opa, opb, cin)
variable tmp: integer;

begin
tmp := 0;
if opa = '1' then tmp := tmp + 1; end if;
if opb = '1' then tmp := tmp + 1; end if;
if cin = '1' then tmp := tmp + 1; end if;
if tmp > 1 then cout <= '1' after TP;

else cout <= '0' after TP; end if;
if tmp mod 2 = 0 then sum <= '0' after TP;

else sum <= '1' after TP; end if;
end process;

end architecture algo;

opa opb cin

process

sum cout

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-12

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1212

Architecture body (3/3)Architecture body (3/3)

♦ Example: 1-bit full adder, structural model
• Design entity: add1(str)
• Direct instantiation

library gates;
architecture str of add1 is

signal s1, s2, s3, s4: bit;
begin

A1: entity gates.and2d1(dfl)
generic map (TPR => TP)
port map (i1 => opa, i2 => opb, o => s1);

A2: entity gates.and2d1(dfl)
generic map (TPR => TP)
port map (i1 => s2, i2 => cin, o => s3);

O1: entity gates.or2d1(dfl)
generic map (TP)
port map (opa, opb, s2);

O2: entity gates.or2d1(dfl)
generic map (TP)
port map (s3, s1, cout);

X1: entity gates.ex2d1(dfl)
generic map (TPR => TP)
port map (o => s4, i1 => opa, i2 => opb);

X2: entity gates.ex2d1(dfl)
generic map (TP)
port map (s4, cin, sum);

end architecture str;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-13

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1313

Design libraryDesign library

♦ Example: library GATES

entity and2d1 is
generic (TPR: time := 0 ns);
port (i1, i2: in bit; o: out bit);

end entity and2d1;
architecture dfl of and2d1 is
begin

o <= i1 and i2 after TPR;
end architecture dfl;

entity ex2d1 is
generic (TPR: time := 0 ns);
port (i1, i2: in bit; o: out bit);

end entity ex2d1 ;
architecture dfl of ex2d1 is
begin

o <= i1 xor i2 after TPR;
end architecture dfl;

entity or2d1 is
generic (TPR: time := 0 ns);
port (i1, i2: in bit; o: out bit);

end entity or2d1;
architecture dfl of or2d1 is
begin

o <= i1 or i2 after TPR;
end architecture dfl;

Library
GATES

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-14

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1414

TestbenchTestbench

♦ Example: 1-bit full adder,
truth table check

entity tb_add1 is
end entity tb_add1;

architecture bench of tb_add1 is
signal op1, op2, ci, sum, co: bit;

begin
UUT: entity work.add1(dfl)

generic map (TP => 1.2 ns)
port map (

opa => op1,
opb => op2,
cin => ci,
sum => sum,
cout => co);

Stimulus_check: process
type table_elem is record

x, y, ci, co, s: bit;
end record;
type table is array (0 to 7) of table_elem;
constant TT: table :=

(-- x -- y -- ci ------ co -- s --
('0', '0', '0', '0', '0'),
('0', '0', '1', '0', '1'),
('0', '1', '0', '0', '1'),
('0', '1', '1', '1', '0'),
('1', '0', '0', '0', '1'),
('1', '0', '1', '1', '0'),
('1', '1', '0', '1', '0'),
('1', '1', '1', '1', '1'));

begin
for i in TT'range loop

op1 <= TT(i).x;
op2 <= TT(i).y;
ci <= TT(i).ci;
wait for 5 ns;
assert co = TT(i).co and sum = TT(i).s;

end loop;
wait; -- stop définitif du processus

end process Stimulus_check;
end architecture bench;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-15

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1515

SignalsSignals

♦ Signal declaration:

♦ Examples:

♦ Signal driver:

signal signal-name {, ... } : type [:= expression] ;

signal S: bit_vector(15 downto 0); -- default initial value = (others => ’0’)
signal CLK: bit := ’1’; -- explicit initial value
signal reset, strobe, enable: boolean; -- default initial value = FALSE

vc
vc+1

tc+1

vc+2

tc+2

vc+3

tc+3
current

value

transactions

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-16

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1616

Process statementProcess statement

♦ Basic concurrent statement:

♦ Process life cycle:
• Created at elaboration time with all its local declarations (e.g. variables)
• Activated/stopped during simulation (variables retain state)
• Destroyed at the end of the simulation

♦ Not a subprogram!

[label :] process [(signal-name { , ... })] [is]
{ declaration }

begin
{ sequential-statement }

end process [label] ;

constant
type

variable
subprogram

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-17

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1717

Process activation controlProcess activation control

♦ Either through a sensitivity list:

♦ Or through wait statements:

process (S1, S2, …)
begin

sequential statements
end process; -- equivalent to sensitivity list

process
begin

sequential statements
wait on S1, S2;

end process;

wait for 10 ns;
process
begin

…
wait …;
…

end process;

wait on S1, S2, S3;

wait until clk = '1';
wait on clk until clk = '1'; -- equivalent to previous one
wait on reset until clk = '1'; -- not sensitive to an event on clk

wait;
wait until next_event; -- with variable next_event: boolean;

wait on S1, S2 until en = '1' for 15 ns;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-18

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1818

Signal assignment statementSignal assignment statement

♦ Concurrent or sequential statement:

♦ Examples:

[label :] signal-name <= [delay-mode] value-expression [after time-expression] {, … } ;

-- signal S: bit;
stimulus: process
begin

wait for 5 ns;
S <= ’1’, ’0’ after 10 ns, ’1’ after 18 ns, ’0’ after 25 ns;
wait; -- forever

end process stimulus;

-- signal S: bit;
stimulus: process
begin

wait for 5 ns;
S <= '1';
wait for 10 ns;
S <= '0';
wait for 8 ns;
S <= '1';
wait for 7 ns;
S <= '0';
wait;

end process stimulus;
[ns]

50 15 23 30
'0'

'1'

S

S:
15

'1'
'0' '1' '0'

23 30

signal driver

current value
NOW = 5 ns transactions

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-19

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 1919

Delay modesDelay modes

inv1: process (A) is
begin

Y1 <= not A after 5 ns;
-- Y1 <= inertial not A after 5 ns;

Y2 <= reject 2 ns inertial not A after 5 ns;
end process inv1;

inv2: process (A) is
begin

Y3 <= transport not A after 5 ns;
Y4 <= reject 0 ns inertial not A after 5 ns;

end process inv2;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-20

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2020

Process examplesProcess examples

entity latch is
port (en, d: in bit; q: out bit);

end entity latch;

architecture bhv of latch is
begin

process (en, d)
begin

if en = '1' then
q <= d;

end if;
end process;

end architecture bhv;

♦ Latch

-- signal A, B, Q: bit;
MullerC: process
begin

wait until A = '1' and B = '1';
Q <= '1';
wait until A = '0' and B = '0';
Q <= '0';

end process MullerC;

♦ Asynchronous element

entity dff is
port (clk, d: in bit; q: out bit);

end entity dff;

architecture bhv of dff is
begin

process
begin

wait until clk = '1';
q <= d;

end process;
end architecture bhv;

♦ Flip-flop

-- signal clk: bit := ’0’;
clk_gen: process (clk)
begin

clk <= not clk after 5 ns; -- 100 MHz
end process clk_gen;

♦ Clock generator

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-21

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2121

Signal or variable?Signal or variable?

entity shiftreg is
generic (W: positive := 8); -- register width
port (clk, din: in bit; dout: out bit);

end entity shiftreg;

architecture sig of shiftreg is
signal reg: bit_vector(W-1 downto 0);

begin
process
begin

wait until clk = '1';
reg(W-1) <= din;
reg(W-2 downto 0) <= reg(W-1 downto 1) ;
dout <= reg(0);

end process;
end architecture sig;

architecture var of shiftreg is
begin

process
variable reg: bit_vector(W-1 downto 0);

begin
wait until clk = '1';
dout <= reg(0);
reg(W-2 downto 0) := reg(W-1 downto 1);
reg(W-1) := din;

end process;
end architecture var;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-22

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2222

Initialization & simulation cycleInitialization & simulation cycle

I1. Assign initial values to signals and variables.
I2. Tc = 0 ns, δ = 0.
I3. Execute all processes until they suspend.
I4. Determine next time Tn according to S4.

S1. Tc = Tn.
S2. Update signals.
S3. Execute all processes sensitive to updated signals.
S4. Determine next time Tn:

• if pending transactions at current time: δ = δ + 1 -> S2
• if no more pending transactions

or Tn = time'high -> STOP
• else Tn = time of next earliest pending transaction, δ = 0.

S5. Execute postponed processes.
S6. goto S1.

InitialisationInitialisation

Simulation cycleSimulation cycle

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-23

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2323

ZeroZero--delay simulation (delta cycles)delay simulation (delta cycles)

Z

P2 P3

P4

A B

C C

D E

P1

entity noteq is
port (A, B: in bit; Z: out bit);

end entity noteq;

architecture dfl of noteq is
signal C, D, E: bit;

begin
P1: C <= A nand B;
P2: D <= A nand C;
P3: E <= C nand B;
P4: Z <= D nand E;

end architecture dfl;

10
T [ns]

A

B

C

D

E

Z
0

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-24

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2424

Resolution functionResolution function

architecture A of E is
signal S: logic4;

begin
P1: process begin

wait for 10 ns;
S <= ’1’;
wait for 20 ns;
S <= ’0’;

end process P1;
P2: process begin

wait for 20 ns;
S <= ’0’;
wait for 20 ns;
S <= ’1’;

end process P2;
end architecture A;

P1_S driver

P2_S driver

resolutionresolution
functionfunction resolved signal S

'0'

'1'

'X'

-- unresolved types
type ulogic4 is (’X’, ’0’, ’1’, ’Z’);
type ulogic4_vector is array (natural range <>) of ulogic4;
-- resolved types
subtype logic4 is resolve ulogic4;
type logic4_vector is array (natural range <>) of logic4;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-25

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2525

entity buffer is
port (bin: in bit; bout: out bit);

end entity buffer;

architecture str2 of buffer is
signal sint: bit;

component inverter is
generic (TD: delay_length);
port (iin: in bit; iout: out bit);

end component inverter;

begin
inv1: component inverter

generic map (TD => 2.5 ns)
port map (iin => bin, iout => sint);

inv2: component inverter
generic map (TD => 3 ns)
port map (iin => sint, iout => bout);

end architecture str2;

Default configurationDefault configuration
entity inverter is

generic (TD: delay_length := 0 ns);
port (iin: in bit; iout: out bit);

end entity inverter;

architecture bhv of inverter is
begin

iout <= not iin after TD;
end architecture bhv;

♦ Example:
structural buffer

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-26

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2626

Generic parametersGeneric parameters

entity addn is
generic (

TP: time := 0 ns; -- propagation time
NB: natural := 8); -- word size

port (
opa, opb: in bit_vector(NB-1 downto 0);
cin : in bit;
sum : out bit_vector(NB-1 downto 0);
cout : out bit);

end entity addn;

♦ Example:
generic
N-bit adder

entity tb_add32 is
end entity tb_add32;

architecture bench of tb_add32 is
signal opa, opb, sum: bit_vector(31 downto 0);
signal cin, cout: bit;

begin
UUT: entity work.addn(dfl)

generic map (TP => 2 ns, NB => opa'length)
port map (opa, opb, cin, sum, cout);

-- stimulus
…

end architecture bench;

architecture dfl of addn is
begin

process (cin, opa, opb)
variable ccin, ccout: bit;
variable result: bit_vector(sum'range);

begin
ccout := cin;
for i in sum'reverse_range loop

ccin := ccout;
result(i) := opa(i) xor opb(i) xor ccin;
ccout := (opa(i) and opb(i))

or (ccin and (opa(i) or opb(i)));
end loop;
sum <= result after TP;
cout <= ccout after TP;

end process;
end architecture dfl;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-27

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2727

Generate statementGenerate statement

architecture str of addn is
signal c: bit_vector(wsize-1 downto 0);

begin
STAGES: for i in wsize-1 downto 0 generate

signal s_unbuffered: bit;
begin

LSB: if i = 0 generate
FA1: entity work.add1(dfl)

port map (opa => a(0), opb => b(0), cin => ’0’,
sum => s_unbuffered, cout => c(0));

end generate LSB;
OTHERB: if i /= 0 generate

FAi: entity work.add1(dfl)
port map (opa => a(i), opb => b(i), cin => c(i-1),

sum => s_unbuffered, cout => c(i));
end generate OTHERB;
OUT_STAGE: process (en)
begin

if en = ’1’ then
z(i) <= s_unbuffered;

end if;
end process OUT_STAGE;

end generate STAGES;
z(wsize) <= c(wsize-1);

end architecture str;

entity addn is
generic (wsize: positive := 8);
port (

en : in bit;
a, b: in bit_vector(wsize-1 downto 0);
z : out bit_vector(wsize downto 0));

end entity addn;

♦ Example:
structural N-bit adder

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-28

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2828

STD_LOGIC_1164 package (1/2)STD_LOGIC_1164 package (1/2)

package STD_LOGIC_1164 is
type std_ulogic is (’U’, -- un-initialized

’X’, -- forcing unknown
’0’, -- forcing 0
’1’, -- forcing 1
’Z’, -- high impedance
’W’, -- weak unknown
’L’, -- weak 0
’H’, -- weak 1
’-’ -- don't care);

type std_ulogic_vector is array (natural range <>) of std_ulogic;
function resolved (s: std_ulogic_vector) return std_ulogic;
subtype std_logic is resolved std_ulogic;
type std_logic_vector is array (natural range <>) of std_logic;
-- overloaded logic operators: and, nand, or, nor, xor, xnor, not
-- conversion functions: to_bit, to_bitvector, to_stdulogic, to_stdlogicvector, to_stdulogicvector
-- other fonctions...

end package STD_LOGIC_1164;

library ieee;
use ieee.std_logic_1164.all;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-29

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 2929

STD_LOGIC_1164 package (2/2)STD_LOGIC_1164 package (2/2)
package body STD_LOGIC_1164 is

...
type stdlogic_table is

array (std_ulogic, std_ulogic) of std_ulogic;
constant resolution_table : stdlogic_table := (

--| U X 0 1 Z W L H - |
(’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’), -- | U |
(’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | X |
(’U’, ’X’, ’0’, ’X’, ’0’, ’0’, ’0’, ’0’, ’X’), -- | 0 |
(’U’, ’X’, ’X’, ’1’, ’1’, ’1’, ’1’, ’1’, ’X’), -- | 1 |
(’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’, ’X’), -- | Z |
(’U’, ’X’, ’0’, ’1’, ’W’, ’W’, ’W’, ’W’, ’X’), -- | W |
(’U’, ’X’, ’0’, ’1’, ’L’, ’W’, ’L’, ’W’, ’X’), -- | L |
(’U’, ’X’, ’0’, ’1’, ’H’, ’W’, ’W’, ’H’, ’X’), -- | H |
(’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’) -- | - |);

…

...
function resolved (s : std_ulogic_vector) return std_ulogic is

variable result : std_ulogic := 'Z'; -- default state
begin

if s'length = 1 then return s(s'low); -- single driver case
else

for i in s'range loop
result := resolution_table(result, s(i));

end loop;
end if;
return result;

end function resolved;
...

end package body STD_LOGIC_1164;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-30

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3030

NUMERIC_STD packageNUMERIC_STD package

package NUMERIC_STD is
type unsigned is array (natural range <>) of std_logic; -- equivalent to unsigned integer
type signed is array (natural range <>) of std_logic; -- equivalent to signed integer
-- abs and "-" unary operators
-- arithmetic operators: "+", "-", "*", "/", rem, mod
-- relational operators: "<", ">", "<=", ">=", "=", "/="
-- shift and rotate operators: sll, srl, rol, ror
-- logic operators: not, and, or, nand, nor, xor, xnor
-- conversion functions:
-- to_integer(arg)
-- to_unsigned(arg, size)
-- to_signed(arg, size)

end package NUMERIC_STD;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-31

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3131

VHDL for synthesisVHDL for synthesis

♦ Language subset
• All legal VHDL constructs do not have a meaning for synthesis

♦ Modeling subset
• Synthesis tools recognize specific code templates to infer hardware

♦ 3 IEEE standards:
• IEEE 1164: 9-state logic type std(u)_logic(_vector) + logic operators
• IEEE 1076.3: unsigned and signed types + logic and arith operators
• IEEE 1076.6: synthesis semantics

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-32

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3232

Supported types: enumerated typesSupported types: enumerated types

♦ Types: bit boolean character std_(u)logic

♦ Default encoding:

♦ Specific encoding, e.g. one-hot:

♦ std_(u)logic (in ieee.std_logic_1164)
• Interpreted as 1 bit
• '0', 'L': low logic level
• '1', 'H': high logic level
• 'U', 'X', 'W', '-': metalogical states (ignored)
• 'Z': high-impedance

type state is (idle, init, shift, add, check);
-- encodage: "000" "001" "010" "011" "100"

attribute enum_encoding: string;
attribute enum_encoding of state: type is "00001 00010 00100 01000 10000";
-- idle init shift add check

if enable = '1' then
request <= ready;

else
request <= 'Z';

end if;

library synopsys;
use synopsys.attributes.all;

Predefined types bit and boolean are interpreted as single bits. Other enumerated types are encoded. Default
encoding is binary encoding with enough bits to represent all enumerated states.

When default encoding is not appropriate (e.g. in finite state machine models), it is possible to use a VHDL
attribute declaration do annotate each state with its related encoding word. The VHDL attribute enum_encoding
is not predefined and is available in a tool dependent package.
The "one-hot" encoding example shows the 5-bit words defined in a string in the order in which the enumerated
states are declared.

The logic types std_ulogic and std_logic, defined in the STD_LOGIC_1164 standard package, have a specific
interpretation for synthesis. Even if they formally have 9 states, they are interpreted in hardware as a single bit.
The use of the 'Z' state allows to infer tri-state buffers.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-33

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3333

STD_MATCH functionSTD_MATCH function
library ieee
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity mux is
port (

sel: in std_logic_vector(3 downto 0);
q : out std_logic);

end entity mux;

architecture dc_stdm of mux is
begin

q <= '1' when std_match(sel, std_logic_vector'("1--1")) else '0';
end architecture dc_stdm;

architecture dc of mux is
begin

q <= '1' when sel = "1--1" else '0';
end architecture dc;

The (in)equality check involving metalogical states is always interpreted as being false in synthesis, while it is
correctly interpreted in simulation. The standard package NUMERIC_STD defines the function std_match which
should be used as a replacement to the "=" operator to ensure correct interpretation in synthesis.

A comparison with the std_match function involving don't care states ('-') infers a circuit in which the don't care
bits are discarded.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-34

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3434

Integer & array typesInteger & array types

♦ Integer types: integer natural positive
• Infer 32 bit buses by default!
• Highly recommended to use constrained types

♦ Array types: bit_vector string std_(u)logic_vector unsigned signed
• One-dimension array with static integer index ranges

and scalar or one-dimension array elements
• "Pack of bits": bit_vector std_(u)logic_vector
• MSB/LSB: unsigned signed (ieee.numeric_std/_bit)
• 2-dimension arrays:

-- 7 bits, unsigned
subtype index is natural range 0 to 63;

-- 8 bits, signed 2's complement
subtype my_byte is integer range -128 to 127;

library ieee; use ieee.numeric_std.all;

subtype word is unsigned(31 downto 0);
-- MSB = word'left = word(31)
-- LSB = word'right = word(0)

type register_file is array (0 to 15) of word;

Values of type integer of derived subtypes natural and positive are by default interpreted as 32-bit busses. It is
therefore highly recommended to constraint the ranges to avoid unnecessary large busses. If values in the range
are positive, unsigned values are considered. If they may be negative, signed values in 2's complement are
considered.

Only one-dimension array types are supported in synthesis. Index ranges must be static, meaning that the range
bounds must be known before simulation starts.

The bit_vector and std_(u)logic_vector are interpreted as mere "packs of bits" without any specific meaning (e.g.
no MSB/LSB).

The IEEE 1076.3 standard defines the NUMERIC_BIT and NUMERIC_STD packages that declare the unsigned
and signed array types. The difference between the unsigned (signed) types in the packages is the array element
type: bit or std_logic.

The unsigned type is interpreted (and can be handled) as an unsigned integer. The signed type is intepreted (and
can be handled) as a signed integer in 2's complement format. These two types also interpret the bit on the left as
the most significant bit (MSB) and the bit on the right as the less significant bit (LSB). The main advantage to use
these types is to allow to use arithmetic operations on bit words (which is not possible with the
std_(u)logic_vector type).

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-35

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3535

ConstantsConstants

package cst_pkg is
subtype int16 is integer range 0 to 15;

end package cst_pkg;

use work.cst_pkg.all;
entity cst is

port (S: in int16;
R: out int16);

end entity cst;

architecture a of cst is
constant K: int16 := 5;

begin
R <= S * K;

end architecture a;

package rom_pkg is
subtype t_word is bit_vector(1 to 2);
subtype t_address is natural range 0 to 7;
type t_rom is array (t_address) of t_word;

end package rom_pkg;

use work.rom_pkg.all;
entity add1b is

port (A: in t_address; S: out t_word);
end entity add1b;

architecture tt of add1b is
constant add1b_tt: t_rom := (

0 => "00",
1 | 2 => "10",
3 | 5 | 6 => "01",
4 => "10",
7 => "11");

begin
S <= add1b_tt(A);

end architecture tt;

A constant does not infer any hardware so it is highly recommended to use constants as much as possible to
minimize area and timings. Constant values are propagated at elaboration time.

Constants can also be used to define ROM content.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-36

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3636

Variables & signalsVariables & signals

entity shiftreg is
port (clk, din: in bit; dout: out bit);

end entity shiftreg;

architecture good of shiftreg is
signal sint: bit;

begin
process
begin

wait until clk = '1';
sint <= din;
dout <= sint;

end process;
end architecture good;

architecture bad of shiftreg is
begin

process
variable vint: bit;

begin
wait until clk = '1';
vint := din;
dout <= vint;

end process;
end architecture bad;

architecture good2 of shiftreg is
begin

process
variable vint: bit;

begin
wait until clk = '1';
dout <= vint;
vint := din;

end process;
end architecture good2;

Variables and signals have different semantics in VHDL and this difference is conserved in synthesis. Both
objects can infer a wire, a register or nothing (the object is optimized out).

Recall that a variable has a scope limited to the process or subprogram in which it is defined, while a signal has a
global scope in the whole architecture.

The architectures good and good2 correctly describe a two-bit shift register, while architecture bad infers a 1-bit
register. Note that the simulation would give the same results.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-37

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3737

Initial valuesInitial values

entity E is
port (...; clk, rst: in bit; ...);

end entity E;

architecture sync of E is
signal S: bit_vector(15 downto 0);

begin
process
begin

wait until clk = '1';
if rst = '1' then

S <= (others => '0');
-- + other initializations

else
-- normal behavior...

end if;
end process;

end architecture sync;

synchronous reset

entity E is
port (...; clk, rst: in bit; ...);

end entity E;

architecture async of E is
signal S: bit_vector(15 downto 0);

begin
process (clk, rst)
begin

if rst = '1' then
S <= (others => '0');
-- + other initializations

elsif clk = ’1’ and clk’event then
-- normal behavior...

end if;
end process;

end architecture async;

asynchronous reset

Every VHDL object has an initial value that is either inherited by default from its type or explicitly defined in its
declaration. As none of these ways are supported for synthesis, it is required to include explicit initialization code
in the model. This is usually done as set/reset behavior and requires the declaration of additional set or reset
signals.

A synchronous reset checks a reset signal at a clock edge. An asynchronous reset can be done independently of
the clock signal.

The same approaches can be used for a set signal.

Synchronous designs usually require a way to put the circuit in a known state at power-up or when it is working.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-38

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3838

OperatorsOperators

♦ logical: or and nor nand xor xnor

♦ Relational (a): = /= < (b) > (b) >= (b) <= (b)

♦ Shift & rotate (c): sll srl sla sra rol ror

♦ Addition: + (b) – (b) & (d)

♦ Unary: + –

♦ Multiplication: * (b),(e),(f) / (g),(h) mod (g) rem (g)

♦ Others: ** (i) abs not

priority

–

+

VHDL operators are supported for synthesis with some limitations:

(a) Result is of type boolean.

(b) Can be shared with another operator of the same kind and same priority level.

(c) Introduced in VHDL-1993. The IEEE 1076.6 standard mentions that they are not supported for synthesis and
that the functions SHIFT_LEFT, SHIFT_RIGHT, ROTATE_LEFT and ROTATE_RIGHT from packages
NUMERIC_BIT/_STD should be used instead. Synopsys tools however do support them.

(d) Concatenation operator '&' can be used to emulate shift and rotate operators.

(e) In general infers a combinational circuit. The inference mechanism depends on the tool (e.g. Synopsys'
DesignWare).

(f) If the right operand is a multiple of 2, infers a simple left shifted register.

(g) Right operand must be a power of 2.

(h) If the right operand is a multiple of 2, infers a simple right shifted register.

(i) Powered operand must be a constant equal to 2.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-39

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 3939

Arithmetic operatorsArithmetic operators

package add_dw_pkg is
subtype int8 is integer range -128 to 127;

end package add_dw_pkg;

use work.add_dw_pkg.all;
entity add_dw is

port (
A, B: in int8;
Z: out int8);

end entity add_dw;

architecture dfl of add_dw is
begin

Z <= A + B;
end architecture dfl;

minimize
delays

minimize
area 1-bit full adders

The interpretation of arithmetic operators in synthesis use advanced techniques to select the proper architecture
that meets area or timing constraints. Synthesis tools have libraries of synthesizable VHDL models of arithmetic
operators (adders, multipliers, etc.) with several architectures.

The simple "+" operator can therefore be mapped to either a serial, small area, carry propagation adder, or to a
parallel fast carry look-ahead adder.

The multiply operator "*" usually infers a combinational circuit.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-40

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4040

Operator groupingOperator grouping

R <= A + B + C + 1
R <= (A + B) + (C + 1)

R <= ((A + B) + C) + 1)

A

B

C R A

B

C

R

Grouping terms using parentheses allow for overriding the default priority between operator executions. It also
allows to infer circuits with different performances.

The given structures are obtained after elaboration but before actual technology mapping took place.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-41

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4141

Resource sharing (1/2)Resource sharing (1/2)

Y <= A + B when SEL = '1' else A - B;

Y <= A + B when SEL = '1' else C + D;

Logic synthesis tools are able to exploit possible sharing of resources such as adders if the VHDL model is
written properly. “+”, “-”, “*” and “/” operators can be potentially shared, but only addition and subtraction
operators are in practice.

The bottom left figure shows the sharing of one adder for two statements. This is possible because the operands
are not the same (actually the sharing would work if only one operand is different). Multiplexers are inferred and
make the critical path longer at the benefit of a smaller global area.

The top right figure shows another case of resource sharing where operators are the same, but the operations are
not. A single add-subtract component is inferred in this case.

The use of VHDL operators can lead to large (combinational) circuits that could not be optimum in term of area
or speed. A typical example is the multiplication operator "*". In these cases it could be worth to use a more
detailed model of the operator.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-42

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4242

Resource sharing (2/2)Resource sharing (2/2)
-- concurrent statements
SUM1 <= A + B;
SUM2 <= C + D;
Y <= SUM1 when SEL = ’1’ else SUM2;

-- sequential statements
SUM1 := A + B;
SUM2 := C + D;
if SEL = ’1’ then

Y <= SUM1;
else

Y <= SUM2;
end if;

D

SEL

B

ADD

CA

MUX

Y

ADD

-- concurrent statements
MUX1 <= A when SEL = ’1’ else C;
MUX2 <= B when SEL = ’1’ else D;
Y <= MUX1 + MUX2;

-- sequential statements
if SEL = ’1’ then

MUX1 := A;
MUX2 := B;

else
MUX1 := C;
MUX2 := D;

end if;
Y <= MUX1 + MUX2;

D

SEL

B

MUXSEL

CA

ADD

Y

MUX

if SEL = ’1’ then
Y <= A + B;

end if;

if SEL /= ’1’ then
Y <= E + F;

end if;

No possible
resource
sharing

It is possible to control resource sharing by proper VHDL coding. As an example, the concurrent signal
assignment statement:

Y <= A + B when SEL = '1' else C + D;

can be rewritten to explicitly mention two multiplexers and one adder or two adders and one multiplexerP.

Resource sharing is possible only for one statement at a time and when the statement is included (or is equivalent
to) one process.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-43

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4343

ProcessProcess

♦ A process infers a combinational circuit if and only if all the following
conditions are met:

1) The process has a sensitivity list

2) The process does not declare variables or
variables are always assigned before read

3) All signals that are read in the process are in the sensitivity list

4) All variables or signals are assigned in every branch of the execution
flow (if or case statement)

♦ Otherwise a sequential circuit is inferred
• Flip-flops are usually required
• Latches are often not required

The way process statements are written can infer a combinational or a sequential circuit. Combinational circuits
have asynchronous behaviors which are only driven by events on signals. Sequential circuits have behaviors
which are synchronous to a clock signal and uses flip-flop or latch registers.

The use of concurrent signal assignments always infers combinational circuits.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-44

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4444

Clock signal inferenceClock signal inference

♦ Recognized code templates:
• In if and wait until statements

• In wait until statement

♦ Signal name does not convey any meaning for synthesis
• Recommended to use meaningful names anyway (e.g. clk)

rising_edge (clock-signal-name)

clock-signal-name = '1'

falling_edge (clock-signal-name)

clock-signal-name 'event and clock-signal-name = '1'

clock-signal-name 'event and clock-signal-name = '0'

not clock-signal-name'stable and clock-signal-name = '0'

not clock-signal-name'stable and clock-signal-name = '1'

clock-signal-name = '0'

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-45

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4545

Wait and if statementsWait and if statements

♦ Wait statement for inferring behavior sensitive to signal edges

♦ Several wait statements in a process is legal if and only if they relate to
the same (clock) signal and the same rising or falling signal edge

♦ If statements for inferring behavior sensitive to signal edges or to signal
levels

process
declarations

begin
wait until clock-edge; -- must be the first statement in the process
sequential statements

end process;

process (clock-signal-name, …)
declarations

begin
do not include any statement here
if clock-edge then

sequential statements
end if;
do not include any statement here

end process;

process (clock-signal-name, …)
declarations

begin
do not include any statement here
if signal-level then

sequential statements
end if;
do not include any statement here

end process;

wait statements allow for inferring edge-sensitive sequential elements (flip-flops).

Synchronizing a process on different signals or different edges on the same signal is not supported in synthesis. If
this is really needed, several processes must be used.

The use of several wait statements in a process sensitive on the same (clock) signal and on the same signal edge is
a way to model finite state machines with implicit states, or sequencers.

if statements also allow for inferring level-sensitive sequential elements (latches).

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-46

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4646

Signal assignmentSignal assignment

♦ Delay clause is ignored

♦ Delay modes are not allowed
• reject, inertial

♦ Multiple element waveform is not allowed

S <= ’0’ after 10 ns;

S <= ’1’, ’0’ after 20 ns, ’1’ after 30 ns; -- error

S <= '0';

The right-hand part of the signal assignment can be a literal value (e.g. '0' or '1') or any legal expression that
evaluates to a value of the same type as those of the assigned signal.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-47

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4747

architecture priority1 of ifstmt is
begin

process (A, B, C, D, sel)
begin

Z <= ’0’;
if sel(0) = ’1’ then

Z <= A;
end if;
if sel(1) = ’1’ then

Z <= B;
end if;
if sel(2) = ’1’ then

Z <= C;
end if;
if sel(3) = ’1’ then

Z <= D;
end if;

end process;
end architecture priority1;

Sequential if statementSequential if statement

♦ Implies a pritority

se
l(0

) se
l(1

)

se
l(2

) se
l(3

)

architecture priority2 of ifstmt is
begin

process (A, B, C, D, sel)
begin

Z <= ’0’;
if sel(0) = ’1’ then

Z <= A;
elsif sel(1) = ’1’ then

Z <= B;
elsif sel(2) = ’1’ then

Z <= C;
elsif sel(3) = ’1’ then

Z <= D;
end if;

end process;
end architecture priority2;

se
l(0

)

se
l(1

)

se
l(2

)

se
l(3

)

entity ifstmt is
port (

A, B, C, D: in bit;
sel: in bit_vector(3 downto 0);
Z: out bit);

end entity ifstmt;

if statements infer multiplexers or equivalent combinational gates and implies priority. How priority is handled
depends on the way the statement is written:

• Several cascaded if statements: last branch in the cascade has the higher priority.

• One if statement with several elsif/else alternatives: the first branch has the highest priority.

An assignment similar to "Z <= '0'" before the if statement or an else branch prevents inferring unwanted latches:
-- priority1 -- priority2
process (…) process (…)
begin begin

if sel(0) = '1' then if sel(0) = '1' then
… …

end if; elsif sel(3) = '1' then
… …
if sel(3) = '1' then else

… Z <= '0';
else end if;

Z <= '0'; end process;
end if;

end process;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-48

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4848

entity casestmt is
port (

A, B, C, D: in bit;
sel: in bit_vector(3 downto 0);
Z: out bit);

end entity casestmt;

architecture proc of casestmt is
begin

process (A, B, C, D, sel)
begin
case sel is

when "0001" | "0011" | "0101" | "0111" |
"1001" | "1011" | "1101" | "1111" => Z <= A;

when "0010" | "0110" | "1010" | "1110" => Z <= B;
when "0100" | "1100" => Z <= C;
when "1000" => Z <= D;
when others => Z <= ’0’;

end case;
end process;

end architecture proc;

Sequential case statementSequential case statement

♦ Similar to design entity
ifstmt(priority2)

se
l(0

)

se
l(1

)

se
l(2

)

se
l(3

)

The case statement also infers circuits with multiplexers or equivalent gates. It is interpreted as an if statement
with elsif alternatives

The when others clause is important to prevent inferring unwanted latches.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-49

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 4949

Loop statementsLoop statements
entity forstmt is

port (
x, y: in bit_vector(0 to 2);
s : out bit_vector(0 to 2));

end entity forstmt;

architecture proc of forstmt is
subtype nat is natural range 0 to 2;
constant N: nat := 1;

begin
process (X, Y)
begin

for I in X'range loop
S(I) <= X(I) and Y((I + 1) mod N);
exit when I = N;

end loop;
end process;

end architecture proc;

x(1)

x(0)

y(0)

s(1)

s(0)

library ieee;
use ieee.std_logic_1164.all;
entity whilestmt is

port (
A : in std_logic_vector(7 downto 0);
clk, en : in std_logic;
B : out std_logic_vector(7 downto 0));

end entity whilestmt;

architecture rtl of whilestmt is
begin

process begin
while (en = '1') loop

wait until clk'event and clk = '1';
B <= A;

end loop;
wait until clk'event and clk = '1';

end process;
end architecture rtl;

Loop statements (loop, for, while) are supported for synthesis with some restrictions.

The for or while statement with static iteration limits duplicates the code in the loop (loop unrolling). Premature
loop exits are supported.

There are cases for which a loop statement could be avoided. For example, if we have the following signal
declarations:

signal S1, S2: bit_vector(1 to 10);

then the loop statement:

for i in S1’range loop
S2(i) <= S1(i);

end loop;

could be rewritten in the more compact form as:

S2 <= S1

When iteration limits are not static, memory elements have to be inferred to store the loop index. A wait statement
is therefore required in the loop body.

The infinite loop statement loop … end loop is interpreted as a while loop whose condition is always true.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-50

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5050

SubprogramsSubprograms

♦ Do not infer any structural hierarchy (≠ components)

♦ A function call always infers a combinational circuit
• Resolution functions and conversion functions are ignored

♦ A procedure call infers a combinational circuit if and only if:

1) Its arguments are of mode in or out

2) It does not include any wait statement

3) It does not have side effects

Otherwise it infers a sequential circuit

A function call always infers a combinational circuit since it can only appears in an expression.

A procedure call can infer either a combinational or a sequential circuit. Thisis valid for both concurrent and
sequential forms of the procedure call.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-51

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5151

ProcedureProcedure

architecture a of procstmt is
begin

process (inar)

procedure swap (d: inout darray; l, h: in postitive) is
variable tmp: data;

begin
if d(l) > d(h) then

tmp := d(l);
d(l) := d(h);
d(h) := tmp;

end if;
end swap;

variable tmpar: darray;
begin

tmpar := inar;
swap(tmpar,1,2);
swap(tmpar,2,3);
swap(tmpar,1,2);
outar <= tmpar;

end process;
end architecture a;

package proc_pkg is
subtype data is integer range 0 to 3;
type darray is array (1 to 3) of data;

end package proc_pkg;

use work.proc_pkg.all;
entity procstmt is

port (
inar : in darray;
outar: out darray);

end entity procstmt;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-52

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5252

FunctionFunction entity parity_check is
generic (NBITS: positive := 8);
port (

data: in bit_vector(NBITS-1 downto 0);
prty: out bit);

end entity parity_check;

architecture func of parity_check is
begin

process (data)

function parity (bv: bit_vector) return bit is
variable result: bit;

begin
result := '0';
for i in bv'range loop

result := result xor bv(i); -- odd parity
end loop;
return result;

end function parity;

begin
prty <= parity(data);

end process;

end architecture func;

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-53

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5353

Concurrent statementsConcurrent statements

♦ Signal assignment always infers combinational circuits

♦ Concurrent procedure call
always infers combinational circuits

• Wait statement not allowed in procedure body
• Do not infer any structural hierarchy

♦ Component instance
• Defines a structural hierarchy which is conserved through synthesis
• Possible operations on components during synthesis:

Make instances unique (uniquify)
Make instances frozen (don't touch)
Flatten hierarchy (ungroup)

♦ generate statement
• Both iterative and conditional forms are supported
• Local declarations not supported

-- conditional form (else is mandatory)
S2 <= (S1 and B) when CMD = ’0’ else (C or D);

-- selective form
with CMD select

S2 <= (S1 and B) when ’0’ else
(C or D) when others;

The structural hierarchy implied by component instances is conserved through synthesis. It is recommended to
use components at the RTL level to ease the management of complex designs. This also eases the definition of
timing constraints to critical internal parts of the design.

All instances of the same component usually refer to the same component description. It is required to make each
instance unique uniquify) to allow individual optimization of each instance.

A component may be synthesized separately and then made frozen (don’t touch) when synthezising one level up
in the hierarchy.

The hierarchy can be flattened (ungrouped) during synthesis to allow further optimization across component
boundaries.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-54

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5454

MiscellaneousMiscellaneous

♦ Generic parameters
• Of type integer or derived
• Of an enumerated type

♦ Configurations
• Default configuration only
• (Direct instantiation)

Default configuration means that there is a component declaration that has exactly the same signature as the entity
declaration of a design entity in the working library. Signature includes the signal names, modes and types.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-55

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5555

Test bench modelTest bench model
Test bench model

UUT
(Unit Under Test)

Functional model
RTL model

Gate-level model

• Stimulus
generator

• Interface
emulator

• Error
generator

• Data collector

• Interface
emulator

• Output
checks

entity tb_xxx is
end entity tb_xxx;

architecture bench of tb_xxx is
…

begin
UUT: entity work.E(A) port map (…);
stimulus: process begin

…
end process stimulus;
verification: process begin

…
end process verification;

end architecture bench;

A test bench model aims at validating a functional, RTL or gate-level model. The kind of valifdation depends on
the abstraction level of the unit under test:

• Functional model: interface behavior, communication protocol.

• RTL model: design architecture, control and data parts.

• Gate-level model: timings.

A test bench model can be written in VHDL. Three components may be identified:

• A stimulus generator whose task is to define the stimulus to apply to the unit under test. Stimulus can be
defined in VHDL or in a format closer to the targetted application (e.g. in assembly language or C). In the
latter case, the generator has to translate abstract stimulus in VHDL and possibly apply interface constraints
(e.g. protocol, delays). The generator may also explicitly introduce errors.

• The unit under test (UUT).

• A collector component whose task is to collect output data from the UUT, to possibly translate them into a
more readable form and to make checks. Checks can be made either by comparing the output values to ideal
values defined in the component, or by comparing output values to other output values generated by a
second ideal model stimulated in the same way (e.g. comparing the outputs of a RTL model and a gate-level
model).

The unit under test is instantiated as a component. The stimulus and the collector components may be instantiated
as components or defined as processes.

More details on test bench modeling and verification methods can be found in [Bergeron00].

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-56

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5656

Test bench for a 1Test bench for a 1--bit adder (1/5)bit adder (1/5)
entity tb_add1 is
end entity tb_add1;

architecture bench1 of tb_add1 is
signal op1, op2, ci, sum, co: bit;

begin
UUT: entity work.add1(dfl)

generic map (TP => 1.2 ns)
port map (opa => op1, opb => op2,

cin => ci, sum => sum,
cout => co);

Stimulus_check: process
procedure check (

op1, op2, ci, co, sum: in bit;
exp_co, exp_sum: in bit) is

begin
assert co = exp_co and sum = exp_sum

report "Error for (op1, op2, ci) = (" &
bit'image(op1) & "," & bit'image(op2) &
"," & bit'image(ci) & ")" & LF &
"(co, sum) = (" & bit'image(co) & "," &
bit'image(sum) & ") / expected: (" &
bit'image(exp_co) & "," &
bit'image(exp_sum) &")"

severity error;
end procedure check;
…

…
begin

op1 <= '0'; op2 <= '0'; ci <= '0';
wait for 5 ns;
check(op1, op2, ci, co, sum, '0', '0');

op1 <= '0'; op2 <= '0'; ci <= '1';
wait for 5 ns;
check(op1, op2, ci, co, sum, '0', '1');
…
op1 <= '1'; op2 <= '1'; ci <= '1';
wait for 5 ns;
check(op1, op2, ci, co, sum, '1', '1');

wait; -- wait forever
end process Stimulus_check;

end architecture bench1;

** Error: Error for (op1, op2, ci) = ('0','0','1')
(co, sum) = ('1','1') / expected: ('0','1')
Time: 10 ns Iteration: 0 Instance: :tb_add1

The test bench model uses a single process to define stimulus and to check the outputs. The process generates all
possible input values in sequence (truth table).

The check procedure allows for verifying whether the simulated output values are equal to expected values. If not,
a message is issued.

The verification uses an assert statement that also specifies a severity level. The simulator can be separately
configured to react to particular severity level, e.g. to stop simulation when the severity becomes failure or error.

The 'image attribute allows for converting a value of a predefined type into a string value.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-57

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5757

Test bench for a 1Test bench for a 1--bit adder (2/5)bit adder (2/5)
architecture bench2 of tb_add1 is

signal op1, op2, ci: bit;
signal sum_dfl, sum_str, co_dfl, co_str: bit;

begin

UUT: entity work.add1(str)
generic map (TP => 1.2 ns)
port map (

opa => op1, opb => op2, cin => ci,
sum => sum_str; cout => co_str);

UREF: entity work.add1(dfl)
generic map (TP => 1.2 ns)
port map (

opa => op1, opb => op2, cin => ci,
sum => sum_dfl; cout => co_dfl);

…

…
Stimulus_check: process

procedure check (
op1, op2, ci, co, sum: in bit;
exp_co, exp_sum: in bit) is

begin
…

end procedure check;

begin
op1 <= '0'; op2 <= '0'; ci <= '0';
wait for 5 ns;
check(op1, op2, ci, co_str, sum_str, co_dfl, sum_dfl);

op1 <= '0'; op2 <= '0'; ci <= '1';
wait for 5 ns;
check(op1, op2, ci, co_str, sum_str, co_dfl, sum_dfl);
…
op1 <= '1'; op2 <= '1'; ci <= '1';
wait for 5 ns;
check(op1, op2, ci, co_str, sum_str, co_dfl, sum_dfl);

wait; -- wait forever
end process Stimulus_check;

end architecture bench2;

The test bench model uses a second design entity to serve as a reference model (a dataflow model). The procedure
check then uses the outputs of the reference model as reference values to compare with the outputs from the unit
under test (a structural gate-level model).

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-58

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5858

Test bench for a 1Test bench for a 1--bit adder (3/5)bit adder (3/5)
architecture bench3 of tb_add1 is

signal op1, op2, ci, sum, co: bit;
begin

UUT: entity work.add1(dfl)
generic map (TP => 1.2 ns)
port map (opa => op1, opb => op2,

cin => ci, sum => sum,
cout => co);

Stimulus_check: process
type table_elem is record

x, y, ci, co, s: bit;
end record;
type table is array (0 to 7) of table_elem;
constant TT: table :=

(-- x -- y -- ci ------ co -- s --
('0', '0', '0', '0', '0'),
('0', '0', '1', '0', '1'),
('0', '1', '0', '0', '1'),
('0', '1', '1', '1', '0'),
('1', '0', '0', '0', '1'),
('1', '0', '1', '1', '0'),
('1', '1', '0', '1', '0'),
('1', '1', '1', '1', '1'));

…

…
begin

for i in TT'range loop
op1 <= TT(i).x; op2 <= TT(i).y; ci <= TT(i).ci;
wait for 5 ns;

assert co = TT(i).co and sum = TT(i).s
report "Error for (op1, op2, ci) = (" &

bit'image(op1) & "," & bit'image(op2) & "," &
bit'image(ci) & ")" & LF &
"(co, sum) = (" & bit'image(co) & "," &
bit'image(sum) & ") / expected: (" &
bit'image(TT(i).co) & "," &
bit'image(TT(i).s) &")"

severity error;

end loop;
wait; -- wait forever

end process Stimulus_check;

end architecture bench3;

** Error: Error for (op1, op2, ci) = ('0','1','1')
(co, sum) = ('1','1') / expected: ('1','0')
Time: 20 ns Iteration: 0 Instance: :tb_add1

The test bench model declares the truth table of the unit to test that includes all possible inputs and their
corresponding expected outputs.

The process body applies each input vector every 5 ns and then checks that the simulated output values are equal
to expected values. If not, a message is issued.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-59

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 5959

Test bench for a 1Test bench for a 1--bit adder (4/5)bit adder (4/5)

…
variable tt: bit_vector(1 to 5);
variable exp_co; exp_sum: bit;
variable ll: line;

begin
readline(add1_tt, ll); -- en-tête
while not endfile(add1_tt) loop

readline(add1_tt, ll);
read(ll, tt);
op1 <= tt(1); op2 <= tt(2); ci <= tt(3);
exp_co := tt(4); exp_sum := tt(5);
wait for 5 ns;
check(op1, op2, ci, co, sum, exp_co, exp_sum);

end loop;
wait; -- wait forever

end process Stimulus_check;

end architecture bench4;

use STD.textio.all;
architecture bench4 of tb_add1 is

file add1_tt: text open read_mode is "add1_tt.dat";
signal op1, op2, ci, sum, co: bit;

begin
UUT: entity work.add1(dfl)

generic map (TP => 1.2 ns)
port map (opa => op1, opb => op2,

cin => ci, sum => sum,
cout => co);

Stimulus_check: process
procedure check (

op1, op2, ci, co, sum: in bit;
exp_co, exp_sum: in bit) is

begin
assert co = exp_co and sum = exp_sum

report "Error for (op1, op2, ci) = (" &
bit'image(op1) & "," & bit'image(op2) &
"," & bit'image(ci) & ")" & LF &
"(co, sum) = (" & bit'image(co) & "," &
bit'image(sum) & ") / expected: (" &
bit'image(exp_co) & "," &
bit'image(exp_sum) &")"

severity error;
end procedure check;
…

op1 op2 ci co sum
00000
00101
01001
01110
10001
10110
11010
11111

The truth table is now read from a file.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-60

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 6060

Test bench for a 1Test bench for a 1--bit adder (5/5)bit adder (5/5)
use STD.textio.all;
architecture bench5 of tb_add1 is

file add1_tt: text open read_mode is "add1_tt.dat";
file flog: text open write_mode is "tb_add1.log";
signal op1, op2, ci, sum, co: bit;

begin
UUT: entity work.add1(dfl)

generic map (TP => 1.2 ns)
port map (opa => op1, opb => op2,

cin => ci, sum => sum,
cout => co);

Stimulus_check: process
procedure check (op1, op2, ci, co, sum: in bit;

exp_co, exp_sum: in bit) is
begin

…
end procedure check;
variable tt: bit_vector(1 to 5);
variable exp_co; exp_sum: bit;
variable llr, llw: line;

begin
readline(add1_tt, llr); -- en-tête
write(llw,

string'("time -- op1 op2 ci exp_co exp_sum co sum"));
writeline(flog, llw);
…

…
while not endfile(add1_tt) loop

readline(add1_tt, llr);
read(llr, tt);
write(llw, time'image(now) & string'(" -- ") &

bit'image(tt(1)) & " " & bit'image(tt(2)) & " "
bit'image(tt(3)) & " " & bit'image(tt(4)) & " " &
bit'image(tt(5)));

op1 <= tt(1); op2 <= tt(2); ci <= tt(3);
exp_co := tt(4); exp_sum := tt(5);
wait for 5 ns;
write(llw, " " & bit'image(co) & " " & bit'image(sum));
writeline(flog, llw);
check(op1, op2, ci, co, sum, exp_co, exp_sum);

end loop;
wait; -- wait forever

end process Stimulus_check;

end architecture bench5;
time -- op1 op2 ci exp_co exp_sum co sum
0 ns -- '0' '0' '0' '0' '0' '0' '0'
5 ns -- '0' '0' '1' '0' '1' '0' '1'
10 ns -- '0' '1' '0' '0' '1' '0' '1'
15 ns -- '0' '1' '1' '1' '0' '1' '0'
20 ns -- '1' '0' '0' '0' '1' '0' '1'
25 ns -- '1' '0' '1' '1' '0' '1' '0'
30 ns -- '1' '1' '0' '1' '0' '1' '0'
35 ns -- '1' '1' '1' '1' '1' '1' '1'

The output of the verification process is now written in a log file.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-61

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 6161

Clock generationClock generation

library ieee;
use ieee.std_logic_1164.all;

architecture bench of tb_xxx is
constant CLK_PER: time := 20 ns;
signal clk: std_logic := '0';

begin
UUT: …
clk <= not clk after CLK_PER/2;
Stimulus_check: process

…
end process Stimulus_check

end architecture bench;

library ieee;
use ieee.std_logic_1164.all;

architecture bench of tb_xxx is
signal phi1, phi2: std_logic := '0';
procedure clkgen (

signal clk: out bit;
constant Tperiod, Tpulse, Tphase: in time) is

begin
wait for Tphase;
loop

clk <= '1', '0' after Tpulse;
wait for Tperiod;

end loop;
end procedure clkgen;
…

begin
UUT: …
gen_phi1: clkgen(phi1, Tperiod => 50 ns,

Tpulse => 20 ns,
Tphase => 0 ns);

gen_phi2: clkgen(phi2, Tperiod => 50 ns,
Tpulse => 20 ns,
Tphase => 25 ns);

…
end architecture bench;

The clock behavior can be defined as a separate process (left) or as a concurrent procedure (right).

The procedure clkgen allows for defining symetrical or asymetrical clocks and then can be used to define
nonoverlapping clocks. Furthermore it can be put in a package and reused in several models.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-62

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 6262

Waveform generation (1/2)Waveform generation (1/2)
TL

TH
library ieee;

use ieee.math_real.all;

architecture bench of tb_xxx is

constant PC_MIN: real : = 0.3; -- % min. value ('0')
constant PC_MAX: real := 0.3; -- % max. value ('1')

constant TL_MIN : time := 5 ns;
constant TL_MAX: time := 7 ns;

constant TH_MIN : time := 3 ns;
constant TH_MAX: time := 5 ns;

signal S: bit := '0';
begin

process
variable seed1: positive := 3812;
variable seed2: positive := 915;
…

…
impure function random return real is

variable rnd: real;
begin

uniform(seed1, seed2, rnd);
if rnd < PC_MIN then

return 0.0;
elsif rnd < PC_MIN + PC_MAX then

return 1.0;
else

return rnd;
end if;

end function random;
begin

S <= '0';
wait for TL_MIN + (TL_MAX - TL_MIN)*random;
S <= '1';
wait for TH_MIN + (TH_MAX - TH_MIN)*random;

end process;
…

end architecture bench;

The use of the procedure uniform defined in the IEEE standard package MATH_REAL allows for generating
waveforms whose states may have random durations between some given minimum and maximum values.

The procedure uniform uses and modifies two arguments called seed1 and seed2 that control the generation of a
pseudo-random sequence of values in the open interval]0.0, 1.0[.

The function random modifies the generated random value to meet specific given percentages, namely 30% at
minimum duration, 30% at maximum duration, and 40% at a random value between theses limits. The function is
declared as impure as its execution modifies global variables (side effect). The keyword impure has been
introduced in VHDL-1993.

Digital Systems Modeling Chapter 2: VHDL-Based Design

A. Vachoux 2004-2005 2-63

A. Vachoux, 2004A. Vachoux, 2004--20052005 Digital Systems ModelingDigital Systems Modeling Chapter 2: VHDLChapter 2: VHDL--Based Design Based Design -- 6363

Waveform generation (2/2)Waveform generation (2/2)

library ieee;
use ieee.std_logic_1164.all;

architecture bench of tb_proc is
constant CLK_PER: time := 10 ns;
constant TSETUP : time := 3 ns;
constant THOLD : time := 3 ns;
signal clk: std_logic := '0';
signal rst: std_logic;
signal data: std_logic_vector(3 downto 0);

procedure do_sync_reset (
signal clk: in std_logic;
signal rst: out std_logic) is

begin
rst <= '0'; wait until clk = '0';
rst <= '1'; wait until clk = '0';
rst <= '0';

end procedure do_sync_reset;

procedure apply_vector (
constant vector: in std_logic_vector(3 downto 0);
signal data : out std_logic_vector(3 downto 0);
constant PER : in time := CLK_PER;
constant TS : in time := TSETUP;
constant TH : in time := THOLD) is

…

…
begin

wait until clk = '0';
wait for CLK_PER/2 - TS;
data <= vector;
wait until clk = '1';
wait for TH;
data <= (others => 'X');

end procedure apply_vector;

begin
CLKGEN: clk <= not clk after CLK_PER/2;
DATAGEN: process begin

do_sync_reset(clk,rst);
apply_vector("0011", data);
apply_vector("1101", data);
apply_vector("0000", data, 1 ns, 2 ns);
apply_vector("1111", data, 1 ns);
apply_vector("1001", data, TH => 1 ns)
wait;

end process DATAGEN;
end architecture bench;

The use of procedures allows for factorizing the stimulus generation process and possibly to store these
procedures in some package to favor reuse.

The procedure do_sync_reset performs a synchronous reset.

The procedure apply_vector assigns a test vector to a data bus with meeting some given setup and hold times.

