
An Embedded, Generic and Multiprocessor Hardware Operating System

Fabrice Muller
University of Nice Sophia-Antipolis,

LEAT/CNRS
250 Rue Albert Einstein, Bât. 4, Les Lucioles 1

06560 VALBONNE - France
Fabrice.Muller@unice.fr

Farooq Muhammad
University of Nice Sophia-Antipolis,

LEAT/CNRS
250 Rue Albert Einstein, Bât. 4, Les Lucioles 1

06560 VALBONNE - France
Farooq.Muhammad@unice.fr

Abstract

This paper presents a hardware real time operating
system (HW-RTOS) for multiprocessors. A Virtual
Platform (SystemC) and Prototyping Platform (FPGA
board) have been designed to be generic, modular and to
support multiprocessor architectures and the HwRTOS.
Thus we can customize functionalities and scope of
platforms according to the needs of an application. The
HwRTOS offers classical OS services, new services to
improve multiprocessor management (migration of tasks)
and possibilities of scheduling analysis. Indeed, these
platforms can be also used to develop new scheduling
algorithms to improve the load balancing but also to take
into account others parameters such as low power
parameters.

1 Introduction

With the increasing complexity of applications,
Multiprocessor System on Chip (MPSoC) becomes an
important choice for implementation. But, MPSoC
solutions for real time systems require an efficient Real
Time Operating System (RTOS) to manage the resources
and to guarantee the real time constraints. However, the
verification of the application running on the MPSoC
platform grows to be too complex due to the increase of
number of processors, the application complexity, the bus
interconnections and the management of resources by one
or more OS. Indeed, management of resources and
scheduling of applications distributed on processors are
also complex problems.

We propose an approach which includes a Virtual
Platform and a Prototyping Platform composed of a
number of heterogeneous processors, communication
busses and a generic HwRTOS (Hardware Real Time
Operating System) to manage the MPSoC platform. We
developed a generic RTOS in hardware which could be
used directly on the Virtual Platform (SystemC) and
Prototyping Platform. It is also possible to make decisions
about scheduling techniques (Rate Monotonic, EDF) and
scheduling taxonomy (Global, Local, Hybrid), and adapt
these choices to the varying needs of application at run
time.

Indeed, this HwRTOS is quite generic. We can easily
configure it according to the user needs and application
demands, just a few variables need to be specified like the

number of processors, the number of tasks, the
synchronization methodology and the selection of OS
services. Moreover, one can choose any predefined
scheduling algorithm or user-defined scheduling written
in hardware language for the Prototyping/Virtual Platform
or SystemC language for the Virtual Platform only. Thus,
the HwRTOS is scalable in relation to the application.

This paper is organized as follows: Section 2 presents
some existing software and hardware RTOS. Section 3
introduces the Hardware RTOS. Section 4 details the
hardware part; a new way to develop scheduling
algorithms; the description of the hardware modules;
Section 5 presents some results about implementation of
the HwRTOS. Section 6 illustrates the new proposed flow
through two types of application. Conclusions are
available in section 7.

2 State of Art

We propose a Multiprocessor Hardware RTOS to
perform applications running on processors. The HDL
code of the HwRTOS runs on virtual platform and
prototyping platform. It limits the risk of wrong behaviors
of the application on different levels of abstraction.
Indeed, the behavior of Hardware RTOS is the same on
the virtual platform and the prototyping platform. We
propose to glance through the management of
applications on MPSoC to well-define the context of
work.

One solution often used for the management of
applications is an RTOS. Indeed, some RTOS include
specific services to carry out memory or input/output
management, but all these functionalities are implemented
in software and are supported by the processor. For
example, VxWorks or RTLinux are very complete. Thus
our goal is not to rival with these RTOS, but to define an
efficient hardware implementation and evaluate its
benefits.

The idea of a hardware Operating System that moves
scheduling and inter-process communication from
software to hardware has been addressed in some
previous works. The main idea is to move the RTOS
functionalities that consume more CPU power into
hardware in order to benefit from hardware acceleration.

SiliconOS [3] is a full-fledged operating system in
which the majority of the μlTRON functionality is
implemented on a coprocessor called Silicon TRON.
SiliconOS does not support multiprocessor architectures.
Moreover, services like memory and timer management

that consumes processor time are still implemented in
software. The resulting software kernel is one third the
size of the original software kernel.

The δ SoC Codesign Framework [4] is built around the
Atlanta kernel [1] and allows a more fine-grained
partitioning with respect to [3]. This kernel provides key
RTOS features including multitasking capabilities, event-
driven and priority-based pre-emptive scheduling, inter-
task communication and synchronization, but it does not
permit to change the scheduling at run time. HOPES [2] is
a RTOS-like system that allows run time partitioning and
allocation of reconfigurable FPGAs. It supports both pre-
emptive and non pre-emptive scheduling methods but
does not provide multiprocessor scheduling and
semaphore services. FASTCHART [3] is a real time
kernel fully implemented in hardware. Key features of
this kernel are: priority scheduling, synchronization
primitives and interrupt handling but the last version
(Sierra 16) does not support multiprocessor architectures.
Despite this amount of previous work and initial industrial
attempts like [3], at present commercial RTOS does not
offer generally:

• Multiprocessor support with the possibility of
dynamic load balancing (global and local
scheduling),

• Ability for designers to modify policies at run time.
Users can decide only offline which algorithms to
implement in hardware and cannot adapt to user
needs at run time.

We propose an embedded and generic hardware
multiprocessor RTOS where the user can select statically
the different scheduling algorithms. It can also change the
scheduling policies at run time as well. The effort in this
work focused on not only implementing RTOS in
hardware, but also on providing flexibility to the user for
changing decision-algorithms at run time thanks to VHDL
or SystemC algorithms within the HwRTOS.

3 New Hardware RTOS

The HwRTOS is the heart of the SoPC platform. It can
manage complex applications on a homo/heterogeneous
multiprocessor architectures. There are some generic
parameters (number of processors, number of tasks …) to
adapt the HwRTOS for a target application.

It supports most of OS services implemented in
Hardware as semaphores, message queues, kernel services
and debug services. It is also possible to add easily new
hardware services by a user. In the same way, new
scheduling algorithms could be added in the hardware
algorithm module located in the HwRTOS.

The last point concerns the debug. Indeed, the
HwRTOS proposes a build-in hardware Debug module to
capture or to spy all the OS events. The Debug module is
configurable by software (task scanning, triggering,
command filtering). The trace could be sent to the Trace
Analyzer through a UDP Ethernet to extract performances

of the architecture and the application (overhead,
execution time of tasks, response time, scheduling).

3.1 Software Layers of the HwRTOS

One challenge is to have the same software legacy
code of the application as explained in Figure 1. The
application is composed of local tasks, the shared data,
the code of global tasks which can migrate from one
processor to another and the generic parameters to keep
the coherency between the HDL code and the software
part. The HwRTOS middleware is split in two parts. The
upper layer is the code of the OS services which access
the registers of the HwRTOS to perform the hardware
part of the service.

Application

Local tasks

Global tasks

Shared data

HwRTOS
middleware

OS services
Board Support Package

processor
wrapper
bus

SystemC
Open Virtual Platform Real/Prototyping Platform

libraries
drivers

C

Executable Binary files

Proc 1 Proc NMixed simulator VHDL/SystemC

Generic
Parameters

ML310 board
ML506 board

Figure 1 : Software organisation of the RTOS.

The Prototyping Platform has a target like ML310
board (VirtexII Pro) or ML506 board (Virtex 5).

3.1.1 Behavior of a Service

Each service runs in similar fashion. To illustrate this,
let’s consider the example (Figure 2) of the task delay
service. The first few steps are executed in a critical
section. The first step switches on critical section. Step 2
configures the wait field of the current TCB. Step 3 sends
command to the hardware module. We write the task id,
the delay value and the command that triggers the
execution of the hardware part of service.

status_type rtos_taskDelay(int procNumber, task_id_type id, int delay)
{

setDisableInt();

sw_kernel.tcb->wait = bTRUE;

WriteReg32(procNumber, PARAM1_OFFSET, id);
WriteReg32(procNumber, PARAM2_OFFSET, delay);
WriteReg32(procNumber, COMMAND_OFFSET, TASK_DELAY_CMD);

setEnableInt();

my_tcb = sw_kernel.tcb;
while (my_tcb->wait == bTRUE);

status = my_tcb->status;
return getErrorStatus(status);

}

1

2

3

4

5

6

cr
iti

ca
l s

ec
tio

n

#define taskDelay(id, delay) \
rtos_taskDelay(HWRTOS_PROCESSOR_NUMBER, id, delay)

Figure 2 : Behavior of Task Delay service.

Step 4 allows exiting of the critical section. Step 5
blocks the task while the wait field or the ack_event field
is not valid. The interrupt handler validates the wait
variable and releases the Step 5. In general case, it is not
mandatory that the step 6 of the current task is executed
immediately. Actually it depends on the new elected task
decided by HwRTOS.

3.1.2 Standard OS Services

Each hardware module manages services (semaphore,
message queue, kernel and scheduler). The names of the
services are inspired from those defined in VxWorks, in a
way to simplify the understanding and use of the
HwRTOS. The different services can be used very easily
in all processors. The way of coding of an application is
identical to application coding in case of a mono
processor. HwRTOS is a native multiprocessor RTOS
with built-in multiprocessor services. For example, it
manages synchronizations (semaphores) or message
queues between tasks allocated onto different processors.

3.1.3 New Custom OS Services

The HwRTOS is a multiprocessor RTOS. Thus, it
proposes new interesting OS services to manage
efficiently several processors. The HwRTOS supports two
types of tasks: the local tasks and global tasks. A local
task always runs on the specific processor defined at the
compilation step. Global tasks can be preempted at any
time and can migrate between processors. This migration
of task is supported by Prototyping platform. The
migration is not considered as a service but a native
characteristic inside the HwRTOS.

Firstly, we propose new scheduling selection services
to modify on-line scheduling policy globally or locally.
The decision of modification is done by the application or
a hardware module.

Secondly, the HwRTOS is also used to develop new
scheduling algorithms. Most of these algorithms use
periodic tasks. The semaphore service could be used but it
is not enough accurate due to the overhead. Moreover, it
is more complex to put in its place.

3.1.4 Debug Service

The debug service allows capturing a lot of
encapsulated events coded on FIFOs. We propose
primitives to drive the debug service:

• Filtering primitives: They allow selecting debug
events: tasks, semaphores and message queues
identified by an ID. The others debug events are not
added in the trace. This solution reduces the size of
the trace.

• Triggering primitives: It is possible to start the
capture of the trace when you want and by
processor.

• Trace primitives: The trace is stored in FIFOs (one
per processor). These primitives access to the FIFO
in order to read trace.

When a FIFO is almost full, a processor has to read the
FIFO. The Prototyping Platform can store trace on
memory or flash system or to send the trace to the
Performance Analyzer by RS232 protocol and UDP
protocol (Ethernet).

4 Hardware Part of the HwRTOS

In a way to decrease the processor load, resulting from
RTOS execution and its multiprocessor support, an idea is
to move functionalities of the RTOS to hardware, as seen
in previous part. It is possible using current SoC or
MPSoC that are more flexible. The first work has been to
identify and cut out the RTOS into different modules that
could be implemented in hardware. Another important
characteristic is the multiprocessor aspect. It is necessary
not only to modify easily and statically the number of
processors, but also to change number of tasks per
processor, the number of semaphores and so on. All
hardware RTOS mentioned before does not support this
flexibility, except Atlanta [1].

The first part of the study focused on the
functionalities of the HwRTOS that are essential. Indeed,
90-95% of all RTOS functionalities are limited to the
services [4]: create task, get and release memory buffer,
send a message, receive a message with waiting or with a
time-limit on waiting. On the HwRTOS, we have
implemented all services except memory management.
Moreover, in this approach, all these services are
implemented in hardware. The software part is reduced to
the minimum.

4.1 Specifications

Considering the multiprocessor architecture of Figure
3, we propose to allocate task execution on set of
processors and to use HwRTOS services to schedule tasks
and to synchronize the communications between tasks by
semaphores or message queues. The goal is to run
computational intensive parts of the HwRTOS in
hardware to improve the performances and to control all
processors at any time. We have just kept a minimal
software layer to responds quickly to the commands of
the hardware part.

HwRTOS
core

processorprocessorProcessors

D
eb

ug
 p
or
t

Wrapper

HwRTOS IP

Interrupt
‐ Status
‐ Return value

Hw OS
service

Hw OS
service

Application

Bus
‐ Parameters
‐ Command

Global Area Registers

‐ OS Name, Version
‐ Generic paremeters
‐ Service information
‐ Debug information

‐ Command,parameters
‐ Status, return value …
‐ Tcb pointer
‐ Timer

Processor Area Registers

‐ Busy place,
‐ Debug control
‐ Event filter, trigger
‐ Data trace

Debug Area Registers
Registers

Figure 3 : Interaction with Environment.

The software layer sends parameters and a command
associated to an OS service, towards the hardware part

that triggers the execution of hardware OS services. The
HwRTOS core can be connected to any bus. The designer
has to create a wrapper to adapt the protocol of the
HwRTOS generic bus. The capability of multi-port is
possible to separate the debug port and the application
ports. That does not cause any disturbance in behavior of
the application in the Virtual Platform and Prototyping
Platform.

Each processor is assigned a reserved register area for
OS services and debug. A processor can write parameters,
write commands, read status, read return values, configure
debug and recover debug trace. Each processor can also
access on a global area to obtain general information
about the main characteristics of HwRTOS like number of
processor, number of task, implemented services and so
on. As soon as a command is completed by the hardware
part, two kinds of events or interrupts can occur:

• A “command event” informs the processor that a
return value is available or that the service is
completed with or without errors (by reading the
status register).

• A “schedule event” informs the processor that a
schedule has to be done by the algorithm scheduling
module. When this schedule event occurs,
information stored in registers indicates either if the
system keeps on executing the same task or if it has
to switch to another one. In this case, we have a
migration flag, the number of the previous processor
and the TCB (Task Control Block) of the new task.

Moreover, a task on a processor N may require some
modifications to appear (if possible) in the scheduling of
tasks on another processor M. For example, task Ti on
processor N may suspend the execution of task Tj on
processor M. On the user side, a suspend service, called
on one processor, can suspend a task running either on
same processor or on any remote processor. All other
services like rtosSchedulingSet, taskLock, taskDelay and
others have the same behavior.

4.2 Generic Parameters of the HwRTOS

The power of the HwRTOS is the configuration by
static generic parameters. These parameters can be
defined by the user. All generic parameters are
programmable before synthesis. Indeed, the objective is to
adapt the parameters to the application. We propose main
generic parameters: the technology parameter
(VirtexIIPro, Virtex4 and Virtex5), the number of
processors (1 to N), the number of task per processor (2 to
M), the number of semaphore, the capability of global
scheduling and finally the SystemC algorithms option
(only for the Virtual Platform).

We also have advanced generic parameters to change
the scheduling algorithm, the priority of treatment of each
service, width of all data in the HwRTOS and so on. We
have about more than forty advanced generic parameters
to adjust more precisely the HwRTOS for a domain of
application.

4.3 Hardware Modules

The hardware part is composed of eight main modules
(Figure 4). The Interface module handles the order of
request to all processors. The others modules are the
Delay module, the Semaphore module, the Message
Queue module, the Sensor module and the Tick module.
The Scheduler module is more complex and has been
refined by a Scheduler Controller module and an
Algorithms module. Actually, the Scheduler module
manages the scheduling algorithms and makes decisions
about running tasks for each processor. Lastly, the Debug
Manager captures relevant events in the HwRTOS to be
sent to the Performance Analyzer Tool. Each module
communicates inside the HwRTOS core through three
kinds of bus:

• The Interface bus has one master (the Interface
module) and several slaves (All others service
module except the Scheduler module),

• The Next Task bus is bidirectional, point to point
bus. It sends to the Interface module (Target) the
scheduling information. The Interface module
provides information of used processor and the
current running task on each processor.

• The Scheduler bus has multiple masters. Each
module connected to this bus can be a master.

The advantage of this connectivity is the “plug & play”
approach. Thanks to this modularity, it is possible to add
easily new hardware services connected to the Scheduler
Bus and the Interface Bus. We now describe each module.

Ex
te
rn
al
 B
us

Message
Queue

Semaphore

Delay

Interface

Debug

Scheduler
Controller

Algorithms

Scheduler

Sensor

Service X

Scheduling
parameters

Sc
he

du
le
rB

us

Next Task Bus

Debug Events

In
te
rf
ac
e
Bu

s

Re
‐s
ch
ed

ul
e

ev
en

ts

D
eb

ug
 B
us

Formatted
Debug Data

Se
ns
or
 B
us

Figure 4 : Functional View of HwRTOS core.

4.3.1 Interface Module

The hardware Interface module (Figure 5) is designed
to ease the accesses of registers through a generic parallel
bus protocol which is portable with any standard bus
(PLB, OPB …). We have three main areas. The global
area which provides general information about the

HwRTOS, the processor area where each processor has a
dedicated area and the debug area which is dedicated for
each processor to deal with the debug management

Event Manager

Ex
te
rn
al
 B
us

Sc
he

du
le
rB

us
N
ex
tT
as
k
Bu

s
Debug Events

In
te
rf
ac
e
Bu

s

D
eb

ug
 B
us

Global Area Registers

‐ OS Name, Version
‐ Generic parameters
‐ Service information
‐ Debug information

‐ Command, Parameters
‐ Status
‐ Return value
‐Migration flag
‐ Previous Proc.

Processor Area Registers

‐ Busy place,
‐ Debug control
‐ Event filter, trigger
‐ Data trace

Debug Area Registers

Interface Module

TCBTCBTCB

Timer

Order Manager

Event Manager

O
rd
er

ev
en

ts

interrupt

Event ManagerEvent Manager

Figure 5 : Description of the Interface Module.

The Order Manager interacts directly with the
Scheduler module through the Scheduler Bus for some
services like the creation and deletion of task, the critical
section (lock, unlock), the suspend service and resume
services. It also communicates with each hardware service
through the Interface Bus to manage Semaphore service,
Message Queues service and so on. Finally, the Order
manager is a big finite state machine that dispatches
commands to all other modules through one of two buses.

There are many instances of the Event manager, order
events and schedule events depending on the number of
processors. Each Event manager is assigned to a processor
and it manages these own events to transform them in
interrupt signal sending to concerned processor.

We can notice that the interface has one port or multi-
port capability to connect to processors. The interface
supports either one port to connect all processors, or to
connect one bus per processor, or another combination.

4.3.2 Semaphore Module

The Semaphore module is another important module.
Usually, a semaphore helps to synchronize tasks running
on the same processor, but the semaphore implemented in
the HwRTOS provides a synchronization mechanism for
tasks running on different processors. When a semaphore
is created, the Semaphore module assigns it a unique ID, a
value (binary or counter), and a task-waiting list. The user
also specifies the type of semaphore: binary, counting or
mutual-exclusion (mutex).

4.3.3 Message Queue Module

The Message Queue module can also synchronize
tasks by sending messages between different processors.
The module stores the 32 bits pointers of the data
structure. The shared messages have to be stored in an
external shared memory when the tasks mapped onto
different processors want to communicate among
themselves. The behavior of the Receive primitive is the
same as the Give primitive of the Semaphore service.

4.3.4 Scheduler Module

The Scheduler module is the heart of the HwRTOS and
includes scheduling parameters, the triggering of new
schedule and the management of the scheduling
algorithms. It makes scheduling decisions depending on
the states of the task set and others scheduling parameters
like priority, deadline and of course the scheduling policy.
It also helps the user to switch dynamically between
global and local scheduling policies for multiprocessor
systems, and allows keeping trace of different states of a
task. A task has different states: dead, ready, running or
blocked. The blocked state of a task can be refined by
three states: delayed state for the task delay service,
suspended state for the suspend/resume services and
pended state for the semaphore service or the message
queue service. This information (states, scheduling
parameters, scheduling policies) are stored in registers of
ram blocks. This strategy of keeping task states at a global
level helps switching between local and global
scheduling. There is one central Scheduler Controller
module that triggers the Algorithm module to elect the
next tasks.

4.3.5 Debug Module

The Debug module allows debugging the applications
which are managed by the HwRTOS. The principle is to
capture information (four types of events and associated
data) on the HwRTOS coming from the interface (Figure
5), to format the information for forming a trace and store
them into FIFOs (one per processor). These FIFOs are
read by any processors through the processor ports or the
debug port in order to transmit to the Performance
Analyzer by Ethernet communication or Files.

4.4 New approach for scheduling

The scheduling algorithm is normally coded in
software. Our approach is to describe the algorithm in
HDL or SystemC for Virtual Platform only. To achieve
this, we refine the Scheduler module by two sub-modules
as shown in Figure 6: the Scheduler Controller module
that arbitrates the Scheduler bus and manages the
Algorithms module according to incoming requests. The
behavior of the Scheduler Controller module can be
summarized in three stages:

• We have a module requests which are an update of
the parameters by the Service modules. For
example, the Delay module wants to change the
state of a task from delayed to ready. Moreover, the
Algorithms module is able to request a re-schedule
through the Scheduler Controller module. The
Algorithms module is allowed to re-schedule itself.

• When all transactions between external modules
(Interface module, Delay module …) and the
Scheduler Controller module are finished, a set of
re-schedule events are sent to the Algorithms
module. One re-schedule event is assigned on each
processor. Thus, the number of events sent depends
on the module requests or algorithm request.

• When the computation of the Algorithms module is
completed, the elected tasks are sent to the Interface
module through the next task bus.

Scheduler
Controller Scheduling

Algorithm

Algorithms

Re‐schedule events

module
requests

Algorithms request

Next task
bus

Scheduling
parameters

Scheduler

Figure 6 : New Approach for Scheduling.

This structure based on the Scheduler module
associated with the Algorithms module allows a designer
to develop easily new HDL/SystemC algorithms for
multiprocessor management.

4.5 New Approach for Debugging

The debug of the behavior of the application is
possible by the hardware Debug module inside the
HwRTOS. The Debug module records events of the
Interface module. It allows recording events coming from
the Interface module for the Virtual Platform or
Prototyping platform. It is an important advantage
because the comparison of a virtual trace and prototyping
trace becomes possible.

We have developed a Performance Analyzer tool in
Java language which extracts main characteristics of the
application: overhead, number of context switch, number
of migration, processor load and the OS services called.
The Performance Analyzer makes easy the evaluation of
the behavior and the performances of applications running
on the Prototyping platform.

5 Implementation of the HwRTOS

The HwRTOS implementation has been tested in
VirtexII Pro, Virtex4 and Virtex5 technology. The Figure
8 and Figure 8 sum up the resources for configurations of
the HwRTOS for Virtex5 target.

1 proc 2 proc 4 proc

8 local tasks 1507 2035 3037

16 local tasks 1998 2816 4668

32 local tasks 2853 4478 7958

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

CL
B
 sl
ic
es

CLB Slices

32 Global Tasks
16 Global Tasks
8 Global Tasks

64 Global Tasks
32 Global Tasks
16 Global Tasks

128 Global Tasks
64 Global Tasks
32 Global Tasks

Per processor

Figure 7 : CLB Utilizations on Virtex5 SX50.

We have fixed 8 semaphores, 8 message queues and no
debug service. We also include the local scheduling mode
(by priority and parallel computation) and mixed
scheduling mode (by priority and sequential
computation). To obtain the total number of schedulable
task for a configuration, you must add the local tasks and

global tasks. For example, for 4 processors and 8 local
tasks, the HwRTOS can schedule till 48 tasks.

1 proc 2 proc 4 proc

8 local tasks 2196 2914 4545

16 local tasks 2798 3962 6732

32 local tasks 3948 6090 10930

0

2000

4000

6000

8000

10000

12000

D
FF
 s
lic
es

Dffs or Latches

Per processor

32 Global Tasks
16 Global Tasks
8 Global Tasks

64 Global Tasks
32 Global Tasks
16 Global Tasks

128 Global Tasks
64 Global Tasks
32 Global Tasks

Figure 8 : DFFs Utilizations on Virtex5 SX50.

6 Case Study

We propose two examples in order to illustrate the new
flow. The first deals with a classical application running
on a multiprocessor architecture. The second one is a
typical application to study new scheduling algorithms.

6.1 First Example

We propose a simple example (Figure 9.) which uses
the most of services. The application is composed of six
tasks partitioned on two processors. The GenPt1 task
sends two messages through a message queue MsgQ_1
corresponding to randomize values X and Y of a table
stored in a shared memory. The table is protected by
mutex to avoid the problem of coherency. The WrSqrPt1
task waits the messages and increments the case (X,Y) on
the table. The GenPt2 task and WrSqrPt2 task have the
same behavior as the GenPt1 task and WrSqrPt1 task
except the period. Then, the CheckSqr task waits two
semaphores, next checks and saturates if necessary the
square of the table when the number of the square is
superior to N. After this scanning of the table, a
semaphore is sent to the Display task to display the table
on the console.

GenPt1
Task

WrSqrPt1
Task

CheckSqr
Task

Display
Task

GenPt2
Task

Table(X,Y)++ Table(X,Y)‐‐

Saturation
Table(X,Y) > N => Table(X,Y) = N
Table(X,Y) < ‐N => Table(X,Y) = ‐N

Display Table(X,Y)

X = random(0..8)
Y = random(0..8)

X = random(0..8)
Y = random(0..8)

MsgQ_1 MsgQ_2

SmUpdate1 SmUpdate2

DisplayB

Processor 1 Processor 2

Period = 800 ms Period = 700 ms

Bus

HwRTOS Ethernet
(Socket/UDP)

Shared datas
(global datas)

Table

Mutex

WrSqrPt2
Task

Figure 9 : Application mapped onto the platform.

6.1.1 Application Description

To illustrate the code of the application, the Figure 10
represents the code of the WrSqrPt1 task. The task waits
sequentially the X value and the Y value to form the point

by using the blocking receive primitive of the Message
Queue service. The second stage consists of incrementing
the table when the task takes the mutex. Finally, the task
informs about the update of the table the Display task by a
give primitive of the Semaphore service.

voidWrSqrPt1_Task()
{

int X,Y;
StartPoint();
while (1)
{

/* Wait X Value */
msgQ_Receive(msgQP1_ID, WrSqrPt1_ID, &X, MSGQ_BLOCKING);
/* Wait Y Value */
msgQ_Receive(msgQP1_ID,WrSqrPt1_ID, &Y, MSGQ_BLOCKING);

sem_Take(semMutexTable_ID, WrSqrPt1_ID);

table[Y][X] = table[Y][X] + 1;
CodeDuration(1000);

sem_Give(semMutexTable_ID, WrSqrPt1_ID);

/* Send Semaphore To CheckSqr task */
sem_Give(semC_updateP1_ID, WrSqrPt1_ID);

}
}

Mutex
Section
(10 us)

Wait
point (X,Y)

Send
Update

Figure 10 : Code of the WrSqrPt1 Task.

6.1.2 Evaluation of Performances

Firstly, the application has been tested on the Virtual
Platform. We add execution time inside all tasks with the
CodeDuration primitive as shown in WrSqrPt1 task. In
this example (Figure 11), the processors are not loaded
especially the processor 1. The processor 2 executes the
display task which takes many times as on a real platform.

The Performance Analyzer tool can also evaluate the
global average time of the hardware overhead which is
about 10.48 cycles. One cycle is the clock period of the
HwRTOS. We also refined the overhead per service
(Figure 12). The maximum cycle is for the Periodic Delay
services (min: 6 cycles, average: 20 cycles, max: 36
cycles).

4,01%
28,83%

1,51%

65,12%

0,54%

Processor 1

GenPt1 CheckSqr WrSqrPt1 Idle Task Overhead

52,19%

4,02%

1,50%

41,92%

0,38%

Processor 2

Display GenPt2 WrSqrPt2 Idle Task Overhead

Figure 11 : Distribution of Charge on processors.

Average
Max
Min

0
5

10
15
20

25

30

35

40

Average; 20

Max; 36

Min; 6

cy
cl
es

Hardware Overhead

Figure 12 : Hardware Overhead by OS services.

The software overhead corresponds to the interrupt
running on a processor.

On the Prototyping board, we have also evaluated the
overhead of the application. The hardware overhead does
not change because the HwRTOS is a cycle accurate
model. On the other hand, the average of the software
overhead is about 107 cycles (1.07us). So, the global
overhead is about 118 cycles (1.18 us) which is less than
classical RTOS.

We have also tested this application on Global
Scheduling with migration on the Virtual Platform and
Prototyping Platform with success. The cost of the
migration (migration overhead) can be added on the
Virtual Platform to be close to the real platform. In the
example, we copy the binary code of migration task
(CheckSqr task) on the local memory of processors, at the
same address. This drawback is the increase of binary
code but the performance is better because it is possible to
preempt at any time the task and the cost migration is null
because the context of the task is stored on a shared
memory (Figure 9).

6.2 Second Example

The second example is a classical application to
illustrate a scheduling analysis. We define four
independent tasks: T1 and T2 runs on processor 1 and T3
and T4 runs on processor 2. The scheduling algorithm is
based on the priority of tasks and has been described in
SystemC language instead of VHDL language. We use
the configuration of the Virtual Platform with only two
virtual processors. As shown the Table 1, we obtain
accurate results on the Virtual Platform. We notice the
difference between the result of Theory and Virtual
Platform is due to the overhead of the HwRTOS. The
results have been evaluated with the Performance
Analyzer tool. The Performance Analyzer tool is able to
load a trace to show precision and accurate behavior of
the application thanks to the hardware Debug module.

We can also develop global scheduling algorithm and
use the built-in task migration of the HwRTOS and then
analyze the result thanks to the Performance Analyzer.
The application can be executed on the Prototyping
platform.

Proc (Priority, Period, wcet) Theory Virtual Platform

Pr
oc
 1

Task 1 (20, 100, 25) 25% 25,2%
Task 2 (30, 90, 50) 55,55% 55,54%
Idle 19,45% 18,3%
Overhead 0% 0,96%

Pr
oc
 2

Task 3 (25, 100 , 20) 20% 20,19%
Task 4 (35, 90, 55) 61,11% 61,05%
Idle 18,89% 17,93%
Overhead 0% 0,83%

Table 1: Distribution of Charge of the Periodic Tasks
Example.

7 Conclusion and Perspectives

This article proposes a multiprocessor Hardware
RTOS. The advantages of this HwRTOS are the
possibility of co-development of the Multiprocessor SoC
and software part with the help of the Open Virtual
Platform, the single description of the application with
standard primitive (VxWorks like), a single hardware
Debug module running inside the HwRTOS to capture
performances and finally a standard integration of the
HwRTOS IP on EDA tools.

Thus, the multiprocessor Hardware RTOS is efficient
(fast) and flexible as well since it provides much freedom
to the designer for customization. It integrated main OS
services with multiprocessor characteristics.

In future works, the objectives will be to add new
services to handle hardware tasks on the Virtual Platform
and in a SoPC platform through the partial dynamic
reconfiguration technique.

References

[1] P. Kuacharoen, M. Shalan and V. Mooney. A Configurable
Hardware Scheduler for Real-Time Systems. s.l. : Proceedings
of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA'03) pp.96-101,
June 2003, 2003. Vol. pp.96-101, June 2003.

[2] K. Baskaran, W. Jigang, and T. .Srikanthan. A Hardware
Operating System based Approach for Run-time Reconfigurable
Platform of Embedded Devices. s.l. : 6th Real Time Linux
Workshop (Singapore), Nov 3-5 2004, 2004.

[3] Klevin, Tommy. Get RealFast RTOS with Xilinx FPGAs.
XCELL. 2003, 45.

[4] David Kalinsky, Ph.D., Director of Customer Training. How
can I Save 30% of my Embedded Software Development Effort?
s.l. : White Paper, Enea Embedded Technology, www.ose.com,
Date, pp. 2.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

