Les nanotubes de carbone

Pascale Launois

http://www.lps.u-psud.fr/

launois@lps.u-psud.fr

COURS MASTER2-NANO - UVSQ

³ www.cordis.lu/nanotechnology

PLAN DU COURS

I. Carbone : historique \rightarrow nanotubes de carbone

- II. Structure et caractérisation
- III. Méthodes et mécanismes de synthèse
- IV. Propriétés
- V. Les applications
- VI. Un domaine en plein développement...
- VII. Toxicité, environnement?

I. HISTORIQUE

																		xviii
1	\mathbf{H}^{1}	ľ											XIII	xıv	xv	xvı	xvii	² He
2	³ Li	⁴ Be				Lie I							5 B	°C	⁷ N	°O	⁹ F	¹⁰ Ne
3	¹¹ Na	¹² Mg	Ш	IV	v	VI	VII	viii	IX	x	хı	XII	13 Al	¹⁴ Si	¹⁵ P	16 S	¹⁷ Cl	18 Ar
4	¹⁹ K	²⁰ Ca	21 Sc	Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	³² Ge	33 As	³⁴ Se	35 Br	³⁶ Kr
5	37 Rb	38 Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	⁵³ I	54 Xe
6	55 Cs	56 Ba	Ŀ	72 Hf	73 Ta	$\mathbf{W}^{^{74}}$	75 Re	76 Os	77 Ir	78 Pt	79 Au	® Hg	81 Tl	82 Pb	83 Bi	⁸⁴ Po	85 At	86 Rn
7	⁸⁷ Fr	® Ra	E,	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub		114 Uuq		116 Uuh		118 Uuo
														MAR AN				
				57 La	58 Ce	⁵⁹ Pr	⁶⁰ Nd	^{B1} Pm	⁶² Sm	Eu	Gd Gd	⁶⁵ Tb	⁶⁶ Dy	Но	Er	69 Tm	⁷⁰ Yb	Lu
		ible de		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lw
	Nend	delei	ev		élém	ent solide		éléme	nt liquide		élément	t gazeux		élément a	artificiel			

0.2% en masse de l'environnement terrestre Chimie organique, bio-chimie, vie sur terre

I.1. Le carbone : depuis l'antiquité ...

Figure 1. Une feuille de graphène (à gauche) est un cristal bidimensionnel d'atomes de carbone dont la structure rappelle celle d'un nid d'abeille (à droite).

• Diamant

• Graphite

• Dès l'antiquité :

- élément réducteur pour préparer métaux et alliages à partir d'oxydes
- purification de l'eau en Égypte

- Moyen-âge : feux d'artifice / chinois
- XIX^{ème} siècle : filament lampe / T. Edison
- Actuellement : automobile, aérospatial, énergie...

Diamant

polissage, coupe...

I.2. Découverte des fullerènes, 3ème forme du carbone en 1985!

Histoire détaillée de cette découverte qui résulte d'études du rayonnement interstellaire : ouvrage de vulgarisation ' Perfect Symmetry. The accidental discovery of Buckminsterfullerene', J. Baggot, Oxford University Press, 1994.

- Découverte : Kroto, Heath, O'Brien, Curl & Smalley, Nature 318, 162 (1985)
- Production en masse : W. Krätschmer, W. Lamb, D. Lowell, K. Fostiropoulos and D.R. Huffman, Nature 347, 354 (1990)
- 1996 : prix Nobel de Chimie attribué à R. Curl, H. Kroto & R. Smalley

Fullerène C₆₀ 20 hexagones, 12 pentagones

Graphite : hexagones

Pentagone : courbure positive

Buckminster Fullerènes - 'Buckyballs'

Pavillon américain à l'exposition universelle de Montréal (1967) ¹¹ Buckminster Fuller

Polymérisation

Grande dureté

Supraconductivité...

I.3. Les nanotubes de carbone (1991, 1993)

Longueur ~ μ m (jusqu'au cm)

UNIDIMENSIONNEL

Who should be given the credit for the discovery of carbon nanotubes? M. Monthioux and V. L. Kuznetsov Carbon 44, 1621 (2006)

PLAN DU COURS

I. Carbone : historique \rightarrow nanotubes de carbone

II. Structure et caractérisation

III. Méthodes et mécanismes de synthèse

IV. Propriétés

V. Les applications

VI. Un domaine en plein développement...

II. STRUCTURE et CARACTÉRISATION

II.1. STRUCTURE

- NTs monoparois idéaux
- Défauts
- Arrangement => fagots & NTs multiparois
- Autres...

II.2. CARACTÉRISATION

- Microscospies
- Diffusion Raman
- Diffraction des rayons X

II.1. STRUCTURE

$$\mathbf{C} = \mathbf{n} \ \mathbf{a}_1 + \mathbf{m} \ \mathbf{a}_2$$

$$\Rightarrow$$
 C²=a²(n²+m²+2n.m.cos(60°))

 \Rightarrow C= $\pi\Phi$ = $a\sqrt{n^2+m^2+nm}$

 $\cos(\theta) = \mathbf{C.a_1}/(\mathbf{Ca})$

 $C.a_1 = (n + m\cos(60^\circ))a^2 = (2n+m) a^2/2$

 $=> \cos(\theta) = (2n+m)/2/\sqrt{n^2+m^2+nm}$

 $sin(\theta) = (\mathbf{C} \times \mathbf{a}_1) \cdot \mathbf{z} / (\mathbf{Ca})$

 \Rightarrow $\sin(\theta) = \sqrt{3} m/2 / \sqrt{n^2 + m^2 + nm}$

 $(9,-3): C=19.8\text{\AA}, \Phi=6.3\text{\AA}, \theta=-19.1^{\circ}$

 $\mathbf{T} = \mathbf{t}_1 \ \mathbf{a}_1 + \mathbf{t}_2 \ \mathbf{a}_2$ $\mathbf{C} = \mathbf{n} \ \mathbf{a}_1 + \mathbf{m} \ \mathbf{a}_2$ $\mathbf{C}.\mathbf{T} = \mathbf{0}$ $\Rightarrow \mathbf{t}_1 (2\mathbf{n} + \mathbf{m}) + \mathbf{t}_2 (2\mathbf{m} + \mathbf{n}) = \mathbf{0}$

T=OB,

B= 1er point du réseau graphène par lequel passe la droite $\perp C$ => t₁ et t₂ n'ont pas d'autre diviseur commun que 1

 $\Rightarrow t_1 = -(2m+n)/d_R$ $t_2 = (2n+m)/d_R$ $d_R = PGCD(2m+n,2n+m)$

N_{at}= nombre d'atomes par maille

= 2 x nombre d'hexagones par maille nombre d'hexagones par maille= $|\mathbf{C} \times \mathbf{T}| / S_{hex}$ $|\mathbf{C} \times \mathbf{T}| = |\mathbf{t}_1 \mathbf{m} - \mathbf{t}_2 \mathbf{n}| |\mathbf{a}_1 \times \mathbf{a}_2|$, $S_{hex} = |\mathbf{a}_1 \times \mathbf{a}_2|$ => $\mathbf{N}_{at} = 4(n^2 + m^2 + nm)/d_R$

$$(n,m)=(9,-3)$$

 \downarrow
 $(t_1,t_2)=(-1,5)$
 $N_{at}=84$

22

R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

SWNTs : les différentes géométries

24

Énergie de courbure $(1/\Phi^2) \leftrightarrow$ énergie des liaisons pendantes

Limite de stabilité des nanotubes : Ф~4Å

Défauts

Pentagone : courbure positive

http://jcrystal.com/steffenweber/gallery /NanoTubes/NanoCones.html

Fullerène C₆₀: 12 pentagones 20 hexagones

Heptagone : courbure négative

Image: J.C. Charlier

(10,5)

virag.elte.hu/~kurti/ science.html

(9,0)/(5,5)

angle de courbure: 36°

Ph. Lambin *et al.*, Chem. Phys. Lett. 245, 85 (1995)

(8,-1)/(6,4)

angle de courbure: 34°

A. Fonseca *et al.*, Synth. Met.77, 235 (1996)

Images de Ph. Lambin

28

Arrangement : fagots de NTs monoparois, NTs multiparois

FAGOTS

10-200 NTs

Nanotubes de mêmes diamètres assemblés en fagot (réseau hexagonal 2D)

NANOTUBES MULTIPAROIS

Nombre de parois: $2 \Rightarrow 40$ $d \sim 0.34$ nm

Φint~2nm (peut être aussi petit que 0.4nm); Φext~20nm

Autres nanofilaments de carbone...

L.P. Biró, S.D. Lazarescu, P.A. Thiry, A. Fonseca, J.B. Nagy, A.A. Lucas and Ph. Lambin, Europh. Lett. 50, 494 (2000)

31

Nanotubes hétéroatomiques

Composés lamellaires (2D) :

- liaisons chimiques satisfaites dans les couches, qui sont donc assez stables
- inter-couches : vdW
- bords des couches : très réactifs

NTs de carbone => NTs formés à partir d'autres composés lamellaires que le graphite

Nanotube **BN**

WS₂: composé lamellaire où un feuillet=une couche W entre 2 couches S

 $\checkmark \exists$ des NTs obtenus à partir de composés non lamellaires; ex. TiO₂

II.2. CARACTERISATION

a. Microscope électronique en transmission

Images de nanotubes mono et multifeuillets

ee-

Images de défauts et de la fermeture des tubes

'Pentagons, heptagons and negative curvature in graphite microtubule growth',

S. Iijima, T. Ichhashi and Y. Ando, Nature 356, 776 (1992)

J. Gavillet, A. Loiseau, F. Ducastelle, S.Thair, P. Bernier, O. Stéphan, J. Thibault and J. -C. Charlier, Carbon 40, 1649 (2002)

Armchair tube (10,10)

Helical tube (17,3): two 6-fold patterns rotated by 2 θ

b. Microscopie tunnel (STM, 1987)

Principe

- Une pointe très fine formant la sonde est approchée de qq 0,1 nm de la surface et balaie la surface
 - Un potentiel de qq volts est appliqué entre la pointe et la surface
- Des électrons circulent entre un atome de la pointe et un atome de la surface (courant tunnel)
- Cartographie du courant --- Images des atomes de la surface

Image d'un monotube de carbone

Structure du tube

c. Diffusion Raman

Diffusion inélastique de la lumière

Nanotubes : modes actifs en Raman (d'après R. Saito, M.S. Dresselhaus et G. Dresselhaus)

effet du diamètre (λ =1064 nm)

41

Interactions électrons-phonons : Raman résonant dans les nanotubes => dépendance du spectre Raman avec l'énergie de la lumière (selon que les nanotubes conducteurs ou semiconducteurs, ce qui dépend de leur diamètre et de leur hélicité)

La diffusion Raman :

- un outil de choix pour analyser la structure des nanotubes (diamètre et hélicité)
- études « macroscopiques » (qq. μ m³)

d. Diffraction des rayons X

PLAN DU COURS

I. Carbone : historique \rightarrow nanotubes de carbone

II. Structure et caractérisation

III. Méthodes et mécanismes de synthèse

IV. Propriétés

V. Les applications

VI. Un domaine en plein développement...

III. MÉTHODES ET MÉCANISMES DE SYNTHÈSE

III.1. Les principales méthodes

Voies HAUTES TEMPÉRATURES (a,b)

Les 1ères ...

Évaporation du graphite (T sublimation: 3200°C)

Condensation dans une enceinte où règne un fort gradient de T, sous pression de gaz (He, Ar)

Voies MOYENNES TEMPÉRATURES (c)

Décomposition d'un hydrocarbure à la surface d'une particule métallique

T: 500-1200°C

Intéressant pour production en continu et pour architectures contrôlées ...

Arc électrique (hautes températures)

• Suie :

fullerènes et carbone amorphe

Dans le dépôt sur la cathode :

MWNTs

- Méthode simple
- Nécessite purification (difficile!!) des produits obtenus
- Capacité de production limitée (1g/jour)

SWNTs

obtenus en introduisant des particules métalliques (métal/métal de transition) au niveau de l'anode

Photo : Université Montpellier

49

Ablation laser (hautes températures)

Laser haute puissance continu ou pulsé (dans le second cas: + four)

Selon la nature de l'anode (carbone pur ou carbone+métal) => MWNTs ou SWNTs

ONERA, France

Images : A. Thess et al. Science 273, 483 (1996)

)

Décomposition catalytique en phase vapeur - CCVD

(moyennes températures)

Particules catalytiques (Fe, Co, Ni):

- pré-déposées sur un substrat
- synthétisées in situ

500-800°C => MWNTs

750-1200°C et contrôle taille particules => SWNTS

CCVD / pyrolyse d'aérosols liquides mixtes: hydrocarbure + ferrocène

=> MWNTs alignés

M. Mayne et al., Chem. Phys. Lett 338, 101 (2001)

M. Pinault et al., Diamond and related materials 13, 1266 (2004)

ARCHITECTURE MAÎTRISÉE

Wei et al., Nature (2002)

Parmi les problèmes encore à résoudre :

contrôle de la structure (diamètres et hélicités) des nanotubes

(n,m)	R _{tube} (Å)	T(Å)	θ(°)
10,10	6.86	2.5	30
15,4	6.88	74.8	11.5
19,-4	6.88	74.8	-11.5
11,9	6.88	74.8	26.7
20,-9	6.88	74.8	-26.7
12,8	6.91	18.8	23.4
20,-8	6.91	18.8	-23.4
17,1	6.94	75.6	2.8
18,-1	6.94	75.6	-2.8
13,7	6.97	25.3	20.2
20,-7	6.97	25.3	-20.2
16,3	7.01	76.3	8.4
19,-3	7.01	76.3	-8.4
14,6	7.04	38.3	17
20,-6	7.04	38.3	-17
18,0	7.13	4.3	0
15,5	7.14	15.6	13.9
20,-5	7.14	15.6	-13.9
17,2	7.17	26	5.5
19,-2	7.17	26	-5.5

III.2. Mécanismes de croissance ...

SWNTs formation model

(Gavillet et al, Phys. Rev. Lett. 87 (2001))

General model deduced from the comparison of samples issued from high Temp. (laser, arc) and medium Temp. (CVD) synthesis routes

Step 1: production ofliquid catalyst particles,1 - 20 nm in size andsaturated in carbon

Step 2: nucleation of nanotubes via C segregation at the particle surface Step 3: growth of the nuclei by incorporation of C at the interface nanotube - particle

MWNTs / CCVD

MECANISME PROPOSE :

• (a) diffusion du carbone en volume, formation d'une calotte,

• (b) départ des parois à cause des contraintes accumulées sous la calotte,

 \cdot (c) croissance du tube avec disparition progressive des couches externes,

• (d) départ de la calotte suivante à la disparition des parois externes du tube supérieur

Pentagones et heptagones ...

A. Maiti, C.J. Brabec & J. Bernholc, Phys. Rev. B 55, 6097 (1997)

FIG. 3. The atomistics of hexagon addition at the nanotube base by bond formation between a pair of handle atoms at the opposite sides of a heptagon. (a) For an isolated heptagon, a 5-7 pair forms in addition to a hexagon; (b) for a 5-7-6 complex only an additional hexagon forms; (c) *annihilation* of two adjacent 5-7 pairs into four hexagons by a reverse Stone-Wales switch.

PLAN DU COURS

I. Carbone : historique \rightarrow nanotubes de carbone

II. Structure et caractérisation

III. Méthodes et mécanismes de synthèse

IV. Propriétés

V. Les applications

VI. Un domaine en plein développement...

IV. PROPRIÉTÉS

« Ces nanotubes sont si beaux qu'ils *doivent* être utiles à quelque chose »

R.E. Smalley Prix Nobel de chimie 1996

« Toute loi physique doit être empreinte de beauté mathématique »

« Une théorie mathématiquement belle a plus de chances d'être correcte qu'une théorie inélégante »

> Paul Dirac L'un des pères de la mécanique quantique

Propriétés de la feuille de graphène

Effets :

-enroulement

+

-diamètre nanométrique

Propriétés uniques

-Propriétés électroniques

- Propriétés mécaniques
- Propriétés d'émission de champ
- Bilan

a. PROPRIÉTÉS ÉLECTRONIQUES

D.Mathiot - U.L.P. - Laboratoire CNRS/PHASE

Physique des Composants - 6 65

http://www-phase.c-strasbourg.fr/~mathiot/Cours/Composants/

États d'Énergie des Électrons : Molécule

Les électrons dans les solides

Des niveaux atomiques aux bandes d'énergie Les ondes électroniques deviennent délocalisées La périodicité apparente dépend de la direction de déplacement des e > Structure de bandes dépend de k

 \blacktriangleright Relations de dispersion Ec(k), Ev(k)

Les différents types de conducteurs

ex. : silicium

Graphène

Nanotubes : on enroule !

L'enroulement de la feuille de graphène caractérisé par le vecteur **C** correspond à une condition aux limites périodique.

Les vecteurs k permis vérifient

k.**C**=n 2π (n entier).

k appartient à une famille de droites perpendiculaires à **C** et espacées de $2\pi/C$

Nanotubes conducteurs

Pour qu'il n'y ait pas de gap, il faut qu'une droite passe par un point K

=> Condition : n-m=3p (p entier)
Propriétés électroniques <----> Propriétés structurales

n - m = 3q (q: entier): métallique n - m \neq 3q (q: entier): semiconducteur

Dans le cas semiconducteur : gap ~ 0.75 eV/ Φ _nanotube (nm)

Pentagones, heptagones => jonctions

Images de Ph. Lambin

> (9,0)/(5,5) métal-métal angle de courbure: 36°

Ph. Lambin *et al.*, Chem. Phys. Lett. 245, 85 (1995)

(8,-1)/(6,4) métal-semiconducteur angle de courbure: 34°

A. Fonseca *et al.,* Synth. Met.77, 235 (1996)

Ph. Lambin

Images de

(12,0)/(11,0) métal-semiconducteur jonction droite J. C. Charlier *et al.*, Phys. Rev. B 53, 11108 (1996)

(8,0)/(7,1) métal-semiconducteur angle de courbure: 12° L. Chico *et al.*, Phys. Rev. Lett. 76, 971 (1996)

Diode

Semiconducteur-métal

Z. Yae, H.W. Ch. Postma, L. Balents and C. Dekker, Nature 402, 273 (1999)

b. PROPRIÉTÉS MÉCANIQUES

Module d'élasticité (d'Young) : $E \ge 1$ **TPa** (liaison C-C : comme diamant ou graphène)

Contrainte à la rupture : $\sigma_R \sim 45 \text{ GPa}$

Mesure du module d'élasticité

Avec un microscope à force atomique

Avec un microscope électronique

Franck et al., Science (1998)

Salvetat et al., Phys. Rev. Lett. (1999)

+ micro-machine de traction

Demczyk *et al.*, ⁷⁸ Materials Science and Engineering (2002)

>> fibres de carbone

c. PROPRIÉTÉS D'ÉMISSION DE CHAMP

B. Franklin

Effet de pointe : amplification du champ

Attention aux effets d'écrantage!

Émission de champ

Nanotubes de carbone

- tension seuil ~ 1V (distance ~ μ m)
- courants d'émission élevés : qq. A/cm²
- stabilité de l'émission dans le temps
- vide ~ 10^{-8} Torr

Pointes de Mo

tension seuil 50-100V

durées de vie limitées vide ~ 10⁻¹⁰ Torr

Des propriétés exceptionnelles !

Propriétés	Nanotubes	Pour comparaison*
Taille, forme → Électrochimie → Nano-hybrides	 Φ ~ 1 nm Surface spécifique très importante Nanocontainer 	Cheveu : Φ~100 μm Lithographie électronique : lignes 50nm de large et qq. nm d'épaisseur
→ Émission de champ e ⁻ e ⁻ e ⁻	 tension seuil ~ 1V courants d'émission élevés : qq. A/cn stabilité de l'émission dans le temps vide ~ 10⁻⁸ Torr 	Pointes de Mo: tension seuil 50-100V n ² durées de vie limitées vide ~ 10 ⁻¹⁰ Torr

DENSITÉ 1.3-1.4 g/cm³ Aluminium : 2.7 g/cm³₈₄

*À partir de / mise à jour de: Collins & Avouris, « Les nanotubes en électronique », Pour la science (2001)

Propriétés	Nanotubes	Pour comparaison
Pptés MÉCANIQUES	Module d'Young (rigidité) E≥ 1 TPa	Dix fois celui de l'acier
Contrainte a	Contrainte à la rupture σ _R ~ 45 GPa σ _R Très flexible	Acier : 2 GPa Kevlar : 3.5 GPa
Deformation ϵ		
Transmission de la chaleur	>3000W/m/K à T ambiante	Diamant , graphène : ~2000W/m/K
Stabilité thermique	stables jusque 2800°C sous vide, 750°C à l'air	Les fils métalliques des micropuces fondent entre 600 et 1000°C
Coût	100-2000 € / g (selon pureté)	⁸⁶ 1 g d'or ~ 10 €

PLAN DU COURS

- I. Carbone : historique \rightarrow nanotubes de carbone
- II. Structure et caractérisation
- III. Méthodes et mécanismes de synthèse
- IV. Leurs propriétés
- V. Les applications

VI. Un domaine en plein développement...

V. APPLICATIONS

Pointes de microscope

Écrans plats

Nanoélectronique à base de nanotubes :

l'après-silicium ???

Microélectronique

Transistor

Source, drain, grille

Sans tension électrique sur la grille : le courant passe Avec une tension négative : ne passe plus

Le composant à la base de l'électronique

Semiconducteur

http://www.nanomicro.recherche.gguv.fr/

Électronique à base de silicium

Evolution du nb. de transistors sur la surface d'une « puce », de la taille des grilles des transistors et de leur coût au fil des ans

http://www.nanomicro.recherche.gouv.fr/

La miniaturisation des circuits intégrés à base de silicium va atteindre ses limites

• 1998 : 1er transistor (FED) à base de nanotubes

Room-temperature transistor based on a single carbon nanotube

Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker Department of Applied Physics and DIMES, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

R. Martel et al., Appl. Phys. Lett. (1998)

• 2002 : IBM, Stanford → performances = transistors silicium

Vers électronique à base de nanotubes ??

Artist's conception of a gated nanotube transistor logic circuit. Bachtold et al., Science 294 (2001) 1317.

Transistors : nanotubes semi-conducteurs

Contactés par nanotubes conducteurs

Les défis à relever

- Séparer nanotubes conducteurs et semiconducteurs
- Contrôler les connections
- Fabriquer des composants par millions...

Chimie et auto-organisation

- faible taux de nanotubes

- fort taux de nanotubes

Transport dans un milieu hétérogène

Notion de seuil de percolation

Composite MWNT/PMMA (polymère isolant)

J.M. Benoit, 2003

<u>Composites à « faible » teneur en nanotubes</u> <u>typiquement quelques %</u>

Nanotubes multi-parois

comme composants conducteurs électriques dans polymères, plastiques :

dissipation de la charge électrostatique

 \Rightarrow industrie automobile :

tuyaux et filtres essence, parties plastiques des automobiles (peinture)...

www.hyperioncatalysis.com (Grands diamètres : « proches » fibres de carbone)

Films conducteurs transparents (nanotubes monoparois) : **blindage électromagnétique** des ordinateurs, téléphones...

www.eikos.com

Renforcement mécanique et absorption d'énergie (?)

Fibres à haute teneur (>60%) en nanotubes

CRPP, CNRS, Bordeaux

Univ. of Texas, USA

USA

L'orientation des nanotubes par rapport à l'axe de la fibre est très importante 101 /propriétés mécaniques (LPS, CNRS-Université, Orsay & CRPP, Bordeaux)

Ténacité RECORD

Dalton *et al.*, Nature (2003) Miaudet *et al.*, Nanolett. (2005)

Absorption d'énergie

La fibre de nanotubes est plus tenace que le fil d'araignée, jusque récemment le matériau le plus tenace sur terre! 570Jg⁻¹ / 165 Jg⁻¹

1kg de fil d'araignée peut arrêter un projectile de 400kg lancé à 100km/h

1kg de Kevlar arrête 120kg

1kg d'acier arrête 70kg

La fibre de nanotubes avec 570 J/gr arrête 1500 kg lancés à 100km/h

Il suffit de quelques grammes de fibres de nanotubes pour arrêter une balle de pistolet

 \rightarrow Gilets pare-balles, casques, vêtements de protection, ceintures de sécurité...

«... make materials with unique properties. Nanotubes are the vanguard of this innovation, and are on the cusp of commercial exploitation as the multifunctional components of the next generation of composite materials. »

P. M. Ajayan and J. M. Tour, *MATERIALS SCIENCE: Nanotube composites,* Nature 447, 1066 (2007)

Lampes

Avantages :

- Pas de mercure

- Grande brillance

Inconvénient :

à fluorescence

- Démarrage « instantané »

Consommation > celle des lampes

(/ lampes à fluroescence)

ISE Electronics Corp.

20mm

Ecrans plats

Un premier dispositif d'écran plat à base de nanotubes (1999)

Croissance localisée CVD

6 inches monochrome video display performances

	Definition	320*240
and the second se	Pixel size	350µm
	Anode voltage	2.5kV
	Gate voltage	85V
	Swing voltage	40 V
	Luminance	800Cd/m ²
6 inches video CNT FED	Peak current density	7mA/cm ²
CEA LETI 2005	Uniformity	5%

The technology is easy to scale up

J. Dijon, LETI-CEA

Ecrans plats à base de NTs

Avantages :

faible consommation
haute brillance
temps de réponse rapide
<u>A résoudre :</u> coût

Où en sommes-nous actuellement?

entre recherche et développement

- Meilleure unformité

- Plus faible température de croissance des NTs (400°) par CVD pour pouvoir utiliser des verres bas coût.

Egs. Building Upon Carbon Nanotube Technology, Motorola Prepares to Revolutionize the Flat Panel Display Industry ... May 2006. "According to industry sources", global FED market over \$20 billion by 2010, disrupting the plasma display niche. Among the different field-emission materials, carbon nanotubes represent a very interesting option.

Cathode froide – rayons X

Main –baguée- de la femme de Wilhelm Conrad Röntgen (découverte des rayons X, 1895)

Yue et al., APL (2002) 3

Groupe d'O. Zhou, USA Angiographie rat (/10ms)

O. Zhou group. Recent article - A nanotube-based field emission x-ray source for microcomputed tomography, J. Zhang etal REVIEW OF SCIENTIFIC INSTRUMENTS 76, 094301 2005

Avantages/sources thermoioniques standard :

- Petite taille
- Faible consommation d'énergie
- Longue durée de vie
- Fort courant d'émission : flux
- Spot localisé : résolution
- Temps de réponse rapide : dynamique

 \rightarrow Appareil de radiographie portable...

Nanomédecine

• Destruction de cellules cancéreuses

Équipe H. Dai, Stanford, USA

• Vectorisation de médicaments

Vaccin – souris (équipe A. Bianco, France, 2003)

Régénération tissus

Croissance de neurones sur une plaquette recouverte de nanotubes

Activité synaptique spontanée augmentée

Nanotubes de carbone correctement fonctionnalisés : pourraient jouer un rôle dans la reconstruction de tissus de neurones endommagés ?

117

M. Prato et al., Nano Letters 2005

PLAN DU COURS

- I. Carbone : historique \rightarrow nanotubes de carbone
- II. Structure et caractérisation
- III. Méthodes et mécanismes de synthèse
- IV. Leurs propriétés
- V. Les applications

VI. Un domaine en plein développement...

VI. DOMAINE EN DEVELOPPEMENT

Nanotubes : un domaine en fort développement

 Intérêt très fort- grandissant des universitaires et des industriels

- Un objet « modèle »
 pour les nanosciences
- Un objet d'études interdisciplinaires (physique, chimie, biologie, médecine)
- Applications potentielles importantes

Usine pilote pour la production de masse des NT multiparois 10g/jour (2001)

Usine pilote Arkema à Lacq, France : 10 T/an par an

Usine CNI, Houston, USA :

qq T/semaine

Production de nanotubes en 2004 : 250 T/an, en augmentation depuis.¹²¹

PLAN DU COURS

- I. Carbone : historique \rightarrow nanotubes de carbone
- II. Structure et caractérisation
- III. Méthodes et mécanismes de synthèse
- IV. Propriétés
- V. Les applications
- VI. Un domaine en plein développement...

VII. Toxicité, environnement?

VI. TOXICITÉ, ENVIRONNEMENT?

Augmentation de la production de nanotubes de carbone; nombreuses applications potentielles

Risques biologiques ou environnementaux ?

Production-stockage-transfert-mise en œuvre-fin de vie

• Études ont débuté/se développent.

- Problème complexe car multi-paramètres :
 - Taille (diamètre, longueur)
 - Aggrégation
 - Réactivité de surface (fonctionalisation)
 - Impuretés (nanoparticules catalytiques...)

	CNT	Amount	Model	Exposure conditions/ administration	Exposure duration	Toxicity	Mechanism of toxicity
Toxicology	CNT	Soot with high content of CNT	Human volunteers Albino rabbits	Patch test (filter paper saturated with water suspension of soot). Ocular instillation (Modified Draize rabbit eye test)	96 h 24, 48 and 72 h (0.2 ml of water suspension of soot).	No association with skin irritation or allergene risks	Dermatological trials have not shown signs of health hazard.
	Pristine Arc-CNT	25 mg	Male Dunkin Hartley guinea pigs	Intratracheal instillation (suspension in sterile saline with Tween)	4 weeks (single dose of 0.5 ml)	Not induce any abnormalities of pulmonary function or measurable inflamation	Working with CNT is unlikely to be associated with any health risks.
	Pristine- laser SWNT	1 and 5 mg/kg	Male Crl:CD [®] (SD)IGS BR Rats	Intratracheal instillation (suspension in PBS with 1% Tween 80)	24 h, 1 week, 1 and 3 months	Exposure to the high dose produced mortality within 24 h post-instillation. Pulmonary inflammation with non- dose-dependent granulomas.	Mechanical blockage of upper airways. Foreign tissue body reaction.
	Raw and purified HiPco CNT, Arc-CNT	0.1 and 0.5 mg/ mouse	Male mice B6C3F ₁	Intratracheal instillation (dispersion in heat- inactivated mouse serum)	7 and 90 days (single bolus of 50 µl)	Induced dose-dependent epithelioid granulomas. Mortality was observed with the high dose.	Intrinsic toxicity (surface chemistry, fibrous structure). Biopersistence
	Pristine HiPco and laser- ablation- SWNT	Particles in the air (aerosol)	Human volunteers	Inhalation exposure (filter samples) Dermal exposure (cotton gloves)	30 min 11–16 h	Nanotube concentrations from 0.7 to 53 µg/m ³ (HiPco material produced visible large clumps on the filter) Deposition on individual gloves from 0.2 to 6 mg (visible contamination)	Propensity to unprocessed SWNT forms an aerosol during handling.
	Hat stacked carbon nanofibers	Not specified	Male Wistar rats	Clusters were implanted in the subcutaneous tissue (thoracic region)	1 and 4 weeks (2 bilateral implants/ rat)	Normal process of inflammation for foreign bodies, without severe inflammatory response was observed. No acute toxicity in the subcutaneous tissue. No inhibition of wound healing.	Water solubility and characteristic structure composed (were phagocytosed and delaminated)
	MWNT	0.5, 2 and 5 mg/rat	Female Sprague- Dawley rats	Intratracheal instillation (suspension in sterile 0.9% saline with 1% Tween 80)	1 and 2 months (single bolus of 500 μl/rat)	Not ground MWNT accumulate in the airways. Ground MWNT were cleared more rapidly. Both MWNT have induced inflammatory (more marked for ground MWNT) and fibrotic reactions. Also both have caused pulmonary lesions at 2 months.	Length appears to modulate clearance kinetics. Biopersistence. Intrinsically toxic to the lung.

In vivo studies performed with CNT

	MWNTox (220 and 825 nm)	Clusters of 0.1 mg	Male Wistar rats	Clusters were implanted in the subcutaneous tissue (thoracic region)	1 and 4 weeks (2 bilateral implants/rat)	Granulomatous inflammation. Inflammatory response around 220 nm was slighter than 825 nm MWNTox.	Length: macrophage could envelop the 220 nm more readily than MWNTox. Amount implanted.
	Metal-free HiPco SWNT	0– 40 µg/ mouse	Female C57BL/6 mice	Pharyngeal aspiration (suspension in PBS)	1, 3, 7, 28 and 60 days (single bolus of 50 μl)	Rapid progressive fibrosis and granulomas. Dose-dependent increase in expiratory time. Increased pulmonary resistance.	Delivery and deposition of SWNT in aggregates or dispersed structures. Exposure to respirable SWNT particles can be a risk to developing some lung lesions.
	CVD-and Arc-MWNT from Huczko's lab and commercial sources	15 mg	Guinea pigs	Intratracheal instillation (suspension in sterile saline with SDS)	90 days (single bolus of 0.5 ml)	Organizing pneumonitis with focal non-specific desquamative interstitial pneumonia-like reaction. Increase of lung resistance. Pulmonary lesions.	Time of exposure and material characteristics.
	Purified open SWNT and MWNT	50 µg/ ml	Wistar–Kyoto rats	Intravenous administration (suspension in 0.9% saline solution)	(single dose of 0.5 ml)	Accelerated time and the rate of development of carotid artery thrombosis.	Ability to activate platelets.
Pharmacology	¹²⁵ I-SWNT (OH)	1.5 μg/ mouse	Male KM mice	Intraperitoneal injection, subcutaneous injection, stomach intubation and intravenous injection	Time points from 1 h up to 18 days (single dose of 100 µl)	Distribute in the entire body quickly except for the brain. Accumulate in the bone. Excreted via urine.	Biological behaviour attributed to their compact structure and good biocompatibility.
	[¹¹¹ In] DTPA-CNT	60 and 400 μg/ mouse	Female BALB/c mice	Intravenous administration (in PBS)	30 min, 3 and 24 h (single dose of 200 μl)	Not retained in any of the reticuloendothelial system organs. Rapidly cleared from systemic blood circulation via renal excretion. No accumulation was observed. Without any toxic side effects or mortality.	Water-soluble CNT. Biocompatibility. Improved toxicity profile compared with non-functionalised CNT. Low interaction with blood proteins.
Therapeutics	Mono-and bis-derivatized B cell epitope SWNT	Not specified	Female BALB/c mice	Intraperitoneal administration (in Freund's emulsion with ovalbumin)	2 weeks (single dose)	Elicited strong anti-peptide antibody responses with no detectable cross-reactivity to the CNT.	Suggest that CNT do not possess intrinsic immuno genicity.
	Open- ended CNT	5 mg/kg	Male Wistar rats	Intra-small intestinal administration	Time points from 1 to 6 h (single dose)	CNT gave maximum serum levels of erythropoietin. CNT improve bioavailability of erythropoietin.	Attributed to their size and structure (high adsorption area).

À suivre ...