Cours d'électronique numérique

Aurélie Gensbittel Enseignante-Chercheuse Bertrand Granado Enseignant-Chercheur

Université Pierre et Marie Curie Mel : Aurelie.Gensbittel@upmc.fr Mel : Bertrand.Granado@upmc.fr

Hiver 2007

Plan du Cours

- Introduction
- Algèbre de Boole et Codage
- Introduction au vhdl
- Fonctions Combinatoire Simples
- Fonctions Combinatoires Complexes
- Fonctions Séquentielles Simples
- Fonctions Séquentielles Complexes
- Pipeline
- Technologie des circuits numériques
- Les Convertisseurs Analogiques-Numériques et Numériques-Analogiques

Les enseignants de l'UE201 ...

Cours A. Gensbittel

TD P. Ravary - H. Kokabi

TP P. Ravary - H. Kokabi

Evaluation des connaissances ...

- Le Contrôle Continu : Type QCM, Questions de Cours
- L'examen Final : Réflexion (Les TD ne servent pas à Bachoter !)
- Le Mini-Projet

Evaluation des connaissances: Le Mini-Projet

- Rapport Final à la fin de toutes les scéances de TP
- Evaluation durant le TP
- Soutenance de Mini-Projet

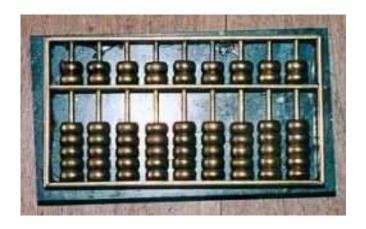
Evaluation des connaissances : Coefficients

- Note de l'écrit E: E = sup((0, 2CC + 0, 8Ex), Ex) où CC est la note du contrôle continu et Ex la note de l'examen final
- Note Finale F: F = 0.65 * E + 0.25 * TP + 0.1 * CC où TP est la note des travaux pratiques.

Polycopié de TD

- Disponible à la reprographie la semaine
- 2ième étage bâtiment Esclangon
- Horaires: 12 h 45 14 h 15 Mardi Mercredi Vendredi
- A avoir avant le TD!

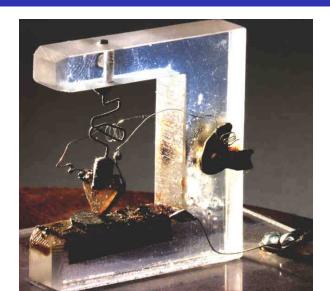
Un peu d'histoire ... Le boulier chinois



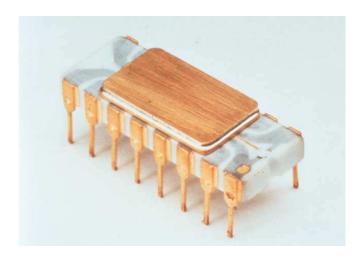
Un peu d'histoire ... La machine de Babbage

Un peu d'histoire ... Une Lampe Triode

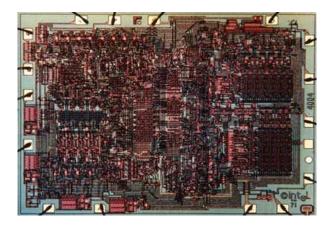
Un peu d'histoire ... Le transistor de 1947



Un peu d'histoire ... Le 4004 d'Intel



Un peu d'histoire ... Le 4004 d'Intel



Aujourd'hui: Un Monde Numérique?

- Le monde numérique est un monde discrétisé
- Le monde réel est un monde continu
- Le monde n'est pas numérique
- Alors pourquoi l'électronique numérique ?
- Discrétisation permet de se prémunir du bruit
- Il est possible de quantifier les erreurs
- Possibilité de mise en oeuvre d'une arithmétique basée sur la logique

Plan du Cours

- Introduction
- Algèbre de Boole et Logique Combinatoire

Références

- Architecture des Ordinateurs Philippe Darche Vuibert,
 Collection Passeport pour l'informatique 77.8 DAR MIE
- Circuits Numériques Ronald J. Tocci Dunod PE

Algèbre de Boole

Algèbre de Boole

Mister G. Boole

■ Mathématicien Anglais du 19^{ième} siècle.

1815 - 1864

La génèse

- Georges Boole introduit un formalise mathématique de la logique The Calculus of Logic Cambridge and Dublin Mathematical Journal Vol. III (1848), pp. 183-9
- (3) That those laws are capable of mathematical expression, and that they thus constitute the basis of an interpretable calculus.
- Au départ beaucoup utilisé dans les jeux de salons
- Mais à l'arrivée : Véritable révolution qui est devenue le fondement de l'électronique numérique

L'algèbre - Les bases - 1

- L'algèbre de Boole manipule des variables qui ne peuvent prendre que deux états : *Vrai* ou *Faux*
- Une telle variable est appelée variable *Booléenne*
- Il est possible aussi d'associer le chiffre 1 à la valeur *Vrai* et le chiffre 0 à la valeur *Faux*
- Les variables Booléennes dans ce cas sont des variables Binaires

L'algèbre - Les bases

exemples

Algèbre de Boole - Définitions

- Algèbre de Boole *B*
 - $\blacksquare B = \langle E, +, ., ^-, 0, 1 \rangle$
 - +, . sont des lois de composition interne
 - est la loi de complémentation

Algèbre de Boole - Lois de Composition

■ loi de composition .

	0	1
0	0	0
1	0	1

■ loi de composition +

Algèbre de Boole - Loi de complémentation

- Le *complément ā* d'une variable *a* est défini par :
 - \blacksquare si $a=1 \rightarrow \overline{a}=0$
 - \blacksquare si $a=0 \rightarrow \overline{a}=1$
- La variable *a*, lorsqu'elle est notée *a*, est dite sous sa forme normale
- La variable *a*, lorsqu'elle est notée \overline{a} , est dite sous sa forme complémentée

Axiomes de bases - 1

- Commutativité
 - $\forall (a,b) \in E^2$
 - a + b = b + a
 - a.b = b.a
- Distributivité
 - $\forall (a, b, c) \in E^3$
 - a + (b.c) = (a + b).(a + c)
 - a.(b+c) = (a.b) + (a.c)

Axiomes de bases - 2

■ Eléments Neutre

$$\forall a \in E$$

$$a + 0 = a$$

■ Complémentation

$$\forall a \in E$$

$$a + \overline{a} = 1$$

$$a.\overline{a}=0$$

Propriétés - 1

- A partir des axiomes de base des propriétés fondamentales sont déduites.
- Eléments Absorbants

$$\forall a \in E$$

$$a+1=1$$

$$a.0 = 0$$

■ Loi d'idempotence

$$\forall a \in E$$

$$a + a = a$$

$$a.a = a$$

Propriétés - 2

- Loi d'involution
 - $\forall a \in E$
 - $\overline{a} = a$
- Loi d'absorption
 - $\forall (a, b) \in E^2$
 - a + (a.b) = a
 - a.(a+b) = a

Propriétés - 5

- Loi d'associativité
 - $\forall (a, b, c) \in E^3$
 - a + (b + c) = (a + b) + c
 - a.(b.c) = (a.b).c
- Loi de De Morgan

 - $\forall (a,b) \in E^2$ $a+b=\overline{a}.\overline{b}$
 - $\overline{a.b} = \overline{a} + \overline{b}$

L'algèbre - Ordre et Fonction

- Relation d'ordre :
 - Ordre Total : 0 < 1
 - Ordre Lexicographique : 00 < 01 < 10 < 11 Utile pour les tables de vérité</p>
- Definition d'une fonction logique :
 - $f(x_{n-1}, x_{n-2}, \ldots, x_1, x_0) : 0, 1^n \to 0, 1, n \in \mathbb{N}^*$

Fonctions Logiques à une variable a

- 1 variable soit 4 fonctions possibles :
 - = f = 0: fonction constante nulle
 - \blacksquare f=1: fonction constante à un
 - f = a: fonction identité
 - $f = \overline{a} :$ fonction complément ou fonction *NON*

Fonctions Logiques à deux variables a et b

- 2 variables soit 16 fonctions possibles
 - f = a.b: fonction ET
 - f = a + b: fonction OU
 - $f = a \oplus b$: fonction *OU-EXCLUSIF*
 - $f = \overline{a.b}$: fonction NON-ET
 - $f = \overline{a+b}$: fonction NON-OU
 - $f = \overline{a \oplus b}$: fonction NON-OU-EXCLUSIF
 - etc...

Fonctions Logiques à *n* variables

- \blacksquare *n* variables soit 2^{2^n} fonctions possibles
 - 3 variables → 256 fonctions possibles
 - 4 variables → 65536 fonctions possibles
 - etc ...

Représentation des fonctions logiques

- La Table de Vérité
- Représentation sous forme de tableau des valeurs de la fonction logique pour toutes les combinaisons de ses variables

a	b	f
0	0	f_0
0	1	f_1
1	0	f_2
1	1	f_3

Représentation des fonctions logiques

- Le Tableau de Karnaugh
 - Représentation sous forme de matrice des valeurs de la fonction logique pour toutes les combinaisons de ses variables en exploitant la propriété d'adjacence

	b	0	1
а	С		
0	0	f_0	f_1
0	1	f_2	f_3
1	1	f_6	f ₇
1	0	f_4	f_5

Représentation des fonctions logiques

- Diagramme de Veitch
- Diagramme de Venn
- Arbre de décision binaire
- Logigramme Partie technologie
- Représentation algébrique Ecriture logique

Ecriture Algébrique

- La représentation sous forme de tableau ou de matrice est limitée ~ 5 variables.
- Nécessité d'utiliser une écriture algébrique
- La fonction logique s'exprime alors sous la forme de variables booléennes reliées entre elles par des opérateurs de l'algèbre de Boole
- $f(a) = \overline{a}$ Fonction NON
- $f(a,b,c) = \overline{c}b + a\overline{b}$

Ecriture Algébrique - Minterme et Maxterme

- Un produit booléen de variables booléennes est appelé *p-terme*
- Une somme booléenne de variables booléennes est appelée s-terme
- Un *Minterme* est un p-terme de degré *n*

$$m_j = \prod_{i=0}^{n-1} \tilde{a}_i, \tilde{a}_i \in (\overline{a_i}, a_i)$$

■ Un *Maxterme* est un s-terme de degré *n*

$$M_j = \sum_{i=0}^{n-1} \tilde{a}_i, \tilde{a}_i \in (\overline{a_i}, a_i)$$

Ecriture Algébrique - Minterme et Maxterme

■ La somme logique de tous les Mintermes est égale à 1 si la fonction réalisée est différente de la fonction constante 0

$$\sum_{j=0}^{p-1} m_j = 1$$

■ Le produit logique de tous les Maxtermes est égal à 0 si la fonction réalisée est différente de la fonction constante 1

$$\prod_{j=0}^{p-1} M_j = 0$$

■ Relation entre Minterme et Maxterme

$$\overline{m_j} = M_j$$

Ecriture Algébrique - Minterme et Maxterme

Exemples

Ecriture Algébrique - Forme Canonique

- Ecriture algébrique d'une fonction logique n'utilisant que des Mintermes ou des Maxtermes.
- Il existe deux possibilités d'écriture :
 - Forme Canonique Disjonctive ou première forme canonique : Elle s'exprime sous forme d'une somme de Mintermes
 - Forme Canonique Conjonctive ou seconde forme canonique : Elle s'exprime sous forme d'un produit de Maxtermes

Ecriture Algébrique - Forme Canonique

■ Fonction Ou-exclusif \oplus : la valeur de la fonction est un si une et une seule des deux variables a la valeur un.

a	b	f
0	0	0
0	1	1
1	0	1
1	1	0

- Forme Canonique Disjonctive : $f(a,b) = a\overline{b} + b\overline{a} \rightarrow Somme des Mintermes tel que f(a,b)=1, lu directement de la table$
- Forme Canonique Conjonctive : $f(a,b) = (a+b).(\overline{a}+\overline{b}) \rightarrow Produit \ des \ Maxtermes \ tel \ que \ f(a,b)=1, \ cherche \ les \ mintermes \ pour \ lesquels \ f(a,b)=0 \ et \ on \ détermine \ les \ valeurs \ de \ a \ et \ de \ b \ liées \ à \ ce \ minterme \ qui \ nie \ f(a,b)=0$

Ecriture Algébrique - Forme Canonique

Exemples

Domaine de définition des fonctions

- Un fonction logique peut-être soit complétement soit incomplétement définie
- Une fonction est complétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction est définie
- Une fonction est complétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction est définie

а	b	f
0	0	0
0	1	0
1	0	0
1	1	1

Domaine de définition des fonctions

- Une fonction est incomplétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction n'est pas définie
- Une fonction est incomplétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction n'est pas définie

a	b	f
0	0	1
0	1	Χ
1	0	Χ
1	1	1

- Utilisation des axiomes de base et des Propriétés qui en découlent
- f(a, b, c) = ab + bc + c en utilisant la loi d'absorption bc + c = c on obtient f(a, b, c) = ab + c
- $f(a,b) = a.(\overline{a} + b)$ en utilisant l'axiome de la complémentation $a.\overline{a} = 0$ on obtient f(a,b) = ab.
- f(a, b, c) = (a + bc)ab = aab + abbc = ab + abc = ab en utilisant successivement la loi d'idempotence et la loi d'absorption.

Exemples

- Une méthode graphique : Les Tableaux de Karnaugh
- Les variables sont présentées de façon à faire apparaître la loi d'absorption
- $a.b + a.\overline{b} = a$
- Pour ce faire le code binaire réfléchi ou code de Gray est utilisé

- Les Tableaux de Karnaugh : étapes
- Regroupement d'ensembles de 2ⁱ cases de même valeur (en général de valeur 1) en maximisant i à chaque fois. Possibilité de regrouper les cases extrêmes
- Regrouper les cases de même valeur restantes avec des cases d'ensembles déjà établis pour avoir 2^j cases en maximisant j
- Ecrire l'équation booléenne algébrique.

Exemples

- Les Tableaux de Karnaugh : remarques
- Dans le cas de fonctions incomplétement définies, considérer
 X comme un 1 afin de maximiser les ensembles
- Méthode limitée à \sim 5 variables.

Exemples

Codage

Codage

Codage

- Système de base : codage décimal
- Conversion décimal-binaire et binaire-décimal
- $\nexists n \Rightarrow 2^n = 10$, nécessité codage octal ou héxadécimal
- Codage DCB : Décimal Codé Binaire
- Code de Gray ou binaire réfléchi
- Code ASCII

Conversion binaire-décimal

- La conversion binaire-décimal s'effectue simplement en réalisant la somme des bits pondérés par leur position

```
Nombre Binaire 1 0 1 1 0 Position du bit 4 3 2 1 0 Nombre Décimal 2^4 0 2^2 2^1 0 = 16 + 0 + 4 + 2 + 0 = 22
```

Conversion décimal-binaire

- La conversion décimal-binaire peut s'effectuer en utilisant la méthode inverse de celle énoncée précédemment. Exemples.
 Fastidieux pour de grand nombre.
- Réalise un division par 2

Nombre binaire = 11101

Codage Hexadécimal

- Travaille avec des quartets binaires : 1010
- Intéressant la taille du mot binaire de base est l'octet
- Un octet = Deux Quartets

Codage Hexadécimal

- La base du système Héxadécimal est la base 16
- Il faut donc 16 symboles
- 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Codage Hexadécimal

Hexa	Décimal	Binaire	Hexa	Décimal	Binaire
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	Α	10	1010
3	3	0011	В	11	1011
4	4	0100	C	12	1100
5	5	0101	D	13	1101
6	6	0110	Е	14	1110
7	7	0111	F	15	1111

Conversion Hexadécimal-Décimal

■ De même que pour la conversion binaire-décimal, il s'agit ici de faire une sommation pondéré des symboles

Nombre Hexadécimal	Α	2	Е
Position du symbole	2	1	0
Puissance associée	16^{2}	16^{1}	16^{0}
Nombre Décimal	$10 * 16^2$	$+2*16^{1}$	$+14*16^{0}$
	= 2606		

Conversion Décimal-Hexadécimal

 De même que pour la conversion décimal-binaire on a recourt à la division

Nombre Héxadécimal = 137

Conversion Hexadécimal-Binaire

 Le nombre binaire est déduit en remplaçant chaque chiffre hexadécimal par son quartet binaire

```
Nombre Hexadécimal E 3 B 1
Nombre Binaire 1110 0011 1011 0001
```

Conversion Binaire-Hexadécimal

- La méthode est l'inverse de la précédente
- on regroupe les bits par quartet et on remplace les quartets par leur équivalent hexadécimal.

Nombre Binaire	0101	1010	1100	1011
Nombre Hexadécimal	5	Α	C	В

Notations

- Les symboles 0,1 appartiennent au code binaire, décimal et hexadécimal
- les symboles 0,1,2,3,4,5,6,7,8 et 9 appartiennent au code décimal et hexadécimal
- Nécessité d'une convention d'écriture pour différencier

Binaire 100_B Décimal 100Hexadécimal 100_H

Décimal Codé Binaire : DCB

- Remplacer chaque chiffre d'un nombre décimal par son équivalent binaire
- Faire une correspondance directe entre binaire et décimal Nombre Décimal 5 3 7 1 Nombre Binaire 0101 0011 0111 0001 Nombre Binaire 0101 1001 1000 0011 Nombre Décimal 5 9 8 3

Décimal Codé Binaire

- Sous-Utilisation de l'espace de représentation binaire
- 6 représentations interdites
- \blacksquare 1010_B,1011_B,1100_B,1101_B,11110_B,1111_B
- Différence entre codage binaire et DCB
- \blacksquare 231 =11100111_B en binaire
- \blacksquare 231 =001000110001_B en DCB

Code de Gray

■ Une représentation ne diffère de la précédente que d'un bit

Décimal	Binaire	Gray	Décimal	Binaire	Gray
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

Code ASCII

- Besoin de traiter de l'information non numérique
- Information Alphanumérique : , ? R t j
- Mise en place d'un codage sur 7 bits : l'ASCII
- American Standard Code for Information Interchange
- 7 bits : 26 lettres minuscules, 26 lettres majuscules, 10 chiffres, 7 signes de ponctuation soit 69 signes à coder. Le reste sert pour des caractères spéciaux
- ASCII étendu : 8 bits

ASCII

Caractère	Code Hexadécima
Α	41 _H
Е	45 _H
1	49 _H
M	4D _H
Ν	4E _H
Q	51 _H
R	52 _H
U	55 _H

- 4E_H55_H4D_H45_H52_H49_H51_H55_H45_H
- NUMERIQUE

Conception

Conception

Comment Concevoir un Circuit ?

- Cela dépend du circuit.
- petits circuits : A la main, en schématique
- circuits moyens : A la main à l'aide de composants discrets
- gros circuits : A l'aide de langage de Description de circuits numériques

Les Langages de description

- Langage de type HDL : Hardware Description Language
- VHDL : Volonté d'Industriels et de Chercheurs de définir un langage HDL
- Verilog : Issu de la société Cadence Inc.
- System C : Mettre au même niveau Logiciel et Matériel

VHDL

- Existe depuis 1987 date de la première norme. 1993 seconde norme.
- Langage Mûr et couramment utilisé
- 3 Niveaux:
 - Niveau Structurel
 - Niveau Flot de Données
 - Niveau Comportemental

VHDL - RTL

- RTL : Register Transfert Level
- Description Synthétisable
- Utilisable pour fondre un circuit
- Utilisée dans ce cours

VHDL - Base

- 3 blocs de base:
 - Les bibliothèques
 - L'entité : Décrit l'interfaçage du composant
 - L'architecture : Décrit le fonctionnement du composant

VHDL - Bibliothèque

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
```

VHDL - Entité

```
entity MON-ET is
port( A : in std_logic;
        B : in std_logic;
        S : out std_logic);
end entity MON-ET;
```

VHDL - L'architecture

```
S = A et B
architecture FLOT of MON-ET is
begin
    S <= A and B;
end architecture FLOT;</pre>
```

flot de conception

- De la description au circuit
- Décrit en VHDL le circuit
- Simule le circuit
- Synthétise le circuit
- Placement-Routage du circuit
- Réalise un masque
- Cuisson du circuit

Langage HDL, a quoi ça sert ?

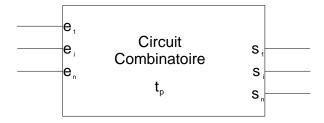
- A la conception d'ASIC
- A la programmation de FPGA (cours SSN)
- A la vérification fonctionnelle de circuits numériques.

Logique Combinatoire

- Transposition de l'algèbre de Boole à *l'électronique*
- Rendu possible grâce au composant tel que le transistor commandé en tension
- Le domaine de validité de ce qui suit est l'électronique numérique

Définition:

Un circuit électronique est dit combinatoire si ses sorties sont déterminées par la combinaison de ses variables d'entrées et ceci après un temps fini. L'état d'un système est donc défini par la combinaison des variables $e_1, \ldots, e_i, \ldots, e_n$.



Les Aléas Temporels

$$a + \overline{a} = 0$$
?

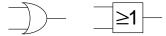
- Fonctions à une variable
- Buffer (identité) : s = a

Inverseur : $s = \overline{a}$

- Fonctions à deux variables
- \blacksquare ET (AND) : s = a.b

■ NON-ET (NAND) : $s = \overline{a.b}$

- Fonctions à deux variables
- OU (OR) : s = a + b



NON-OU (NOR) : $s = \overline{a+b}$

- Fonctions à deux variables
- OU-EXCLUSIF : $s = a \oplus b = a\overline{b} + \overline{a}b$

■ NON-OU-EXCLUSIF : $s = \overline{a \oplus b} = \overline{a\overline{b} + \overline{a}b} = ab + \overline{a}\overline{b}$

Plan du Cours

- Introduction
- Algèbre de Boole et Logique Combinatoire
- Fonctions Combinatoires Complexes

Fonctions Combinatoires Complexes

Fonctions Combinatoires Complexes

introduction

- Composées à partir des opérateurs de base
- Conditionnement de données
- Contrôle de données
- Définies par leur table de vérité

Fonction Egalité

■ Egalité 2 bits

Egalité - VHDL

Fonction Egalité

- Egalité 2 mots de 2 bits
- $a = a_1, a_0 \text{ et } b = b_1, b_0$

b_1, b_0					
a ₁ a ₀ b ₁ b ₀	0	0 1	1	1	
00	1				
01		1			
11			1		
10				1	

- $s = (\overline{a_1 \oplus b_1})(\overline{a_0 \oplus b_0})$
- Egalité de 2 mots de n bits :

$$s = (\overline{a_{n-1} \oplus b_{n-1}})(\overline{a_{n-2} \oplus b_{n-2}})(...)(\overline{a_1 \oplus b_1})(\overline{a_0 \oplus b_0})$$

Egalité - VHDL

Egalité - VHDL

VHDL apres I'UE LE201

Ce que peut faire VHDL Hors du cadre du cours LE201

```
entity egalite is
port( a,b : in std_logic_vector(1 downto 0);
        s : out std_logic);
end entity egalite;
architecture comp of egalite is
begin
    process(a,b) is
    begin
      if a= b then
         s<='1';
      else
         s<='0':
     end if:
    end process;
end architecture comp;
```

Multiplexeurs

- Multiplexeur = Aiguillage
- Une commande choisie l'entrée
- Entrée choisie recopiée sur la sortie
- Partie Commande : p bits
- Partie Donnée : $2^p = n$ entrées, 1 sortie

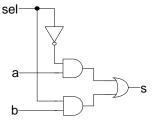
Multiplexeurs 2 vers 1 - Table de vérité

a b sel	0	0 1	1 1	1
0			1	1
1		1	1	

$$s = \overline{sel}.a + sel.b$$

Multiplexeurs 2 vers 1

Schéma



VHDL - mux2v1

VHDL - mux2v1

VHDL un petit cran en plus

Ou l'on utilise des constructions VHDL un peu plus expressives

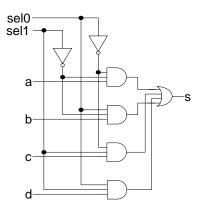
Multiplexeurs 4 vers 1

- 4 données et 2 commandes
- $= 2^6 = 64$ lignes dans la table de vérité
- Toutes les lignes ne sont pas intéressantes
- Une commande ⇒ Une variable pertinente

Multiplexeurs 4 vers 1

 $s = \overline{sel1.\overline{sel0}}.a + \overline{sel1.\overline{sel0}}.b + \overline{sel1.\overline{sel0}}.c + \overline{sel1.\overline{sel0}}.d$

Multiplexeurs 4 vers 1



Multiplexeurs

- Permet de réaliser des fonctions logiques
- Un Multiplexeur n vers 1 réalise 2ⁿ fonctions
- Valeurs des entrées = valeurs de la fonction
- Un Multiplexeur 4 vers 1

х	у	S	entrée mux
0	0	0	a = 0
0	1	0	b = 0
1	0	0	c = 0
1	1	1	d=1

x et y commandes du multiplexeur

Démultiplexeurs

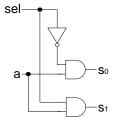
- Inverse du Multiplexeurs
- 1 données, p commandes, $2^p = n$ sorties
- Démultiplexeur 1 vers 2

sel	a	s1	s0
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

Démultiplexeurs

$$\bullet$$
 $s0 = \overline{sel}.a$ et $s1 = sel.a$

Démultiplexeurs



Démultiplexeurs - VHDL

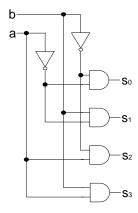
Décodeurs

- Décodage Binaire → Codage 1 parmi n
- \blacksquare n entrées, 2^n sorties

а	b	s3	s2	s1	s0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

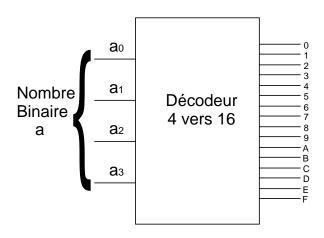
- Autant de tableaux de Karnaugh que de sorties!
- Trivial :
 - $s0 = \overline{a}.\overline{b}$
 - $s1 = \overline{a}.b$
 - $s2 = a.\overline{b}$
 - s3 = a.b

Décodeur



Décodeur

Décodeur Binaire Base n



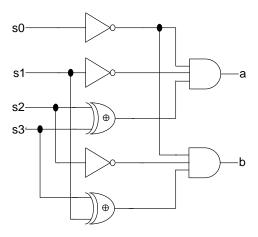
Encodeurs

- inverseur des décodeurs :codeurs
- 2ⁿ entrées, n sorties

			s0		
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	1 0 0 0	1	1

- $b = \overline{s3}.\overline{s2}.s1.\overline{s0} + s3.\overline{s2}.\overline{s1}.\overline{s0} = \overline{s2}.\overline{s0}(s3 \oplus s1)$
- $a = \overline{s3}.s2.\overline{s1}.\overline{s0} + s3.\overline{s2}.\overline{s1}.\overline{s0} = \overline{s1}.\overline{s0}.(s3 \oplus s2)$

Encodeurs



Fonctions Combinatoires Complexes

Fonctions Combinatoires Arithmétiques

Nombres Signés

- Comment Coder les Nombres Signés en Binaire ?
- Introduire un bit de signe : bit de poids fort
- Nombre sur 4 bits

<i>b</i> ₃	b_2	b_1	b_0	signe	valeur décimale
0	1	0	0	+	4
1	1	0	0	-	-4

- Codage Signe + Valeur Absolue
- Nécessite trop de logique pour réaliser des opérateurs arithmétiques

- Utilisation d'un codage qui permet de limiter les opérateur
- Complément à 2 :
 - Bit de signe : bit de poids fort
 - Si bit de signe = 0 : Le nombre est codé
 - Si bit de signe = 1 : Complément à 2 pour avoir la valeur
- Principe : Pour un nombre de n bits complémenter le nombre pour arriver à 2^n

Codage de 7 :

■ Codage de -7:

<i>b</i> ₃	b_2	b_1	b_0	signe	valeur décimale
1	0	0	1	-	-7

- Etapes pour complémenter à 2
- Faire le complément à 1 du nombre : complémentation bit à bit
- Ajouter 1 au nombre
- Exemple : codage de -5

b_3	b_2	b_1	b_0	Commentaires
0	1	0	1	Valeur Absolue
1	0	1	0	Complément à 1
+			1	Ajout de 1
1	0	1	1	Complément à 2

- Avantage :
- Unicité du 0
- Utilisation du même opérateur pour l'addition et la soustraction
- Modulo : $9_H 4_H = (9_H + C_H) modulo (10_H) = 5_H$
- Exemples en binaire.

- Codage sur N bits, N fini
- On veut coder un nombre négatif -P sur N bits, $P \in [0, 2^N]$
- On sait que $2^N = CP + P$
- On pose $-P = CPmod2^N$
- Ce qui donne $-P = (2^N P) mod 2^N$
- On sait que $P \in [0, 2^N]$ donc on a bien $(2^N P) mod 2^N = -P$

Si P positif on le code

$$P = \sum_{i=0}^{i=N-1} b_i * 2^i$$

$$P = b_{N-1} * 2^{N-1} + \sum_{i=0}^{i=N-2} b_i * 2^i \text{ avec } b_{N-1} = 0$$

Si P négatif on le code

$$P = -(2^{N} - \sum_{i=0}^{i=N-1} b_{i} * 2^{i})$$

$$P = -(2^{N} - b_{N-1} * 2^{N-1} - \sum_{i=0}^{i=N-2} b_{i} * 2^{i}) \text{ avec } b_{N-1} = 1$$

$$P = -(2^{N} - 2^{N-1} - \sum_{i=0}^{i=N-2} b_{i} * 2^{i})$$

$$P = -(2^{N-1}(2-1) - \sum_{i=0}^{i=N-2} b_{i} * 2^{i})$$

$$P = -(2^{N-1} - \sum_{i=0}^{i=N-2} b_{i} * 2^{i})$$

$$P = -b_{N-1} * 2^{N-1} + \sum_{i=0}^{i=N-2} b_{i} * 2^{i} \text{ avec } b_{N-1} = 1$$

Nombre en complément à 2

$$P = -b_{N-1} * 2^{N-1} + \sum_{i=0}^{i=N-2} b_i * 2^i$$

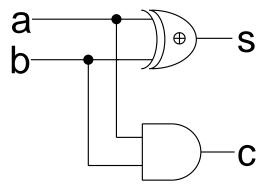
Demi-Additionneur

■ Réalisation d'un demi-additionneur

а	b	S	r
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

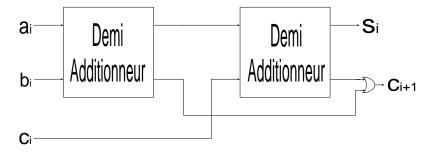
- $s = a \oplus b$
- r = a.b

Demi-Additionneur



Demi-Additionneur

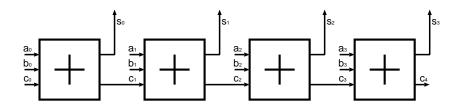
- Introduction d'une retenue d'entrée
- Trois variables d'entrées, deux de sorties
- \blacksquare a_i,b_i,c_i et s_i,c_{i+1}
- $s_i = a_i \oplus b_i \oplus c_i$
- $c_{i+1} = a_i.b_i + a_i.c_i + b_i.c_i$
- Utilisation de deux demi-additionneurs



```
entity add1 is
port( a,b,cin : in std_logic;
       s,cout : out std_logic);
end entity add1;
architecture struct of add1 is
signal stemp,ctemp1,ctemp2 : std_logic;
begin
demi-add1 : entity work.demi-add(flot)
             port map(a,b,stemp,ctemp1);
 demi-add2 : entity work.demi-add(flot)
             port map(stemp,cin,s,ctemp2);
 cout <= ctemp1 or ctemp2
end architecture struct:
```

VHDL apres I'UE LE201

Ce que peut faire VHDL Hors du cadre du cours LE201



Additionneur 4 bits : Entité

```
ENTITY add4 IS
  port (a,b : in std_logic_vector(3 downto 0);
       cin : in std_logic;
       s : out std_logic_vector(3 downto 0);
       cout : out std_logic);
END ENTITY add4;
```

Additionneur 4 bits : Architecture Simple

```
ARCHITECTURE struct_simple OF add4 IS
signal c : std_logic_vector(4 downto 0);
BEGIN
  c(0) \le cin;
  cout \leq c(4):
  add1_0 : entity work.add1(flot)
           port map (a(0),b(0),c(0),s(0),c(1));
  add1_1 : entity work.add1(flot)
           port map (a(1),b(1),c(1),s(1),c(2));
  add1_2 : entity work.add1(flot)
           port map (a(2),b(2),c(2),s(2),c(3));
  add1_3 : entity work.add1(flot)
           port map (a(3),b(3),c(3),s(3),c(4));
END ARCHITECTURE struct_simple;
```

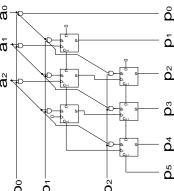
Additionneur 4 bits : Architecture avec Génération

```
ARCHITECTURE struct_generate OF add4 IS
signal c : std_logic_vector(4 downto 0);
BEGIN
  c(0) \le cin;
  cout \leq c(4);
  instance: for i in 0 to 3 generate
  add1_i : entity work.add1(flot)
           port map (a(i),b(i),c(i),s(i),c(i+1));
  end generate;
```

END ARCHITECTURE struct_generate;

Multiplieur

- Utilisation de l'algorithme de Multiplication
- \blacksquare n*m m additions de n



Complément VHDL : Modélisation du temps

```
library ieee;
use ieee.std_logic_1164.all;
entity mon-et is
port(a,b : in std_logic;
      s : out std_logic);
end entity mon-et;
architecture flot of mon-et is
begin
s <= a and b after 25 ns;
end architecture flot;
```

Complément VHDL : Décalage et mise à l'échelle

```
library ieee;
use ieee.std_logic_1164.all;
entity conversion is
port(a : in std_logic_vector(5 downto 0);
      s,s2,s3 : out std_logic_vector(11 downto 0));
end entity conversion;
architecture flot of conversion is
begin
a <= "010101";
s <= "0000" & a & "00"; -- s = "000001010100"
s2 <= "00000" & a & '0'; -- s2 = "000000101010"
s3 <= a & "000000": -- s3 = "010101000000"
end architecture flot;
```

Plan du Cours

- Introduction
- Algèbre de Boole et Logique Combinatoire
- Fonctions Combinatoires Complexes
- Eléments séquentiels de base : Les Bascules

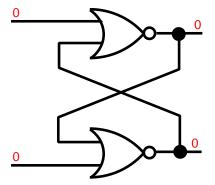
Les éléments séquentiels de base

- Eléments de base
- Régulation du flux des données
- Fonction Mémorisation
- Eléments Asynchrones
- Eléments Synchrones

Eléments Asynchrones

Les Bascules Asynchrones

Le bascule RS



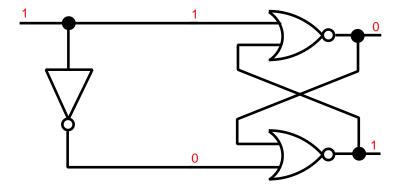
Le bascule RS

		3	γ	Q	
	0	0	Q	\overline{Q}	
■ Table de Vérité	0	1	1	0	
	1	0	0	1	
	1	1	Etat	Interdit	

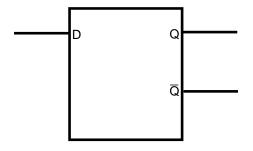
PSIO

- Elément Asynchrone
- Base de toutes les bascules

La bascule D

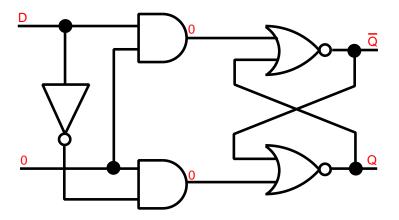


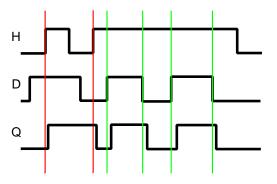
La bascule D



Eléments Synchrone

Bascules Synchrones





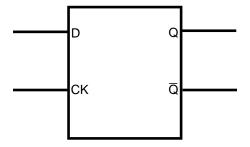
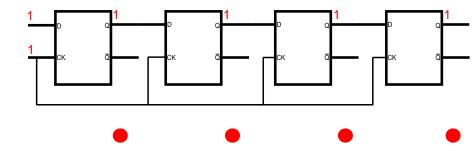
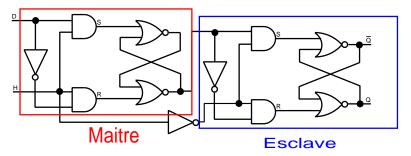


Table de Vérité
$$D \mid H \mid Q_{n+1} \mid \overline{Q_{n+1}} \mid \overline{Q_{n+1$$

La bascule D active sur niveau : chenillar

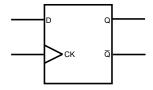


La bascule D active sur front



Architecture Maître-Esclave

La bascule D active sur front

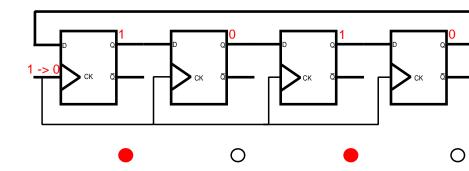


La bascule D active sur front

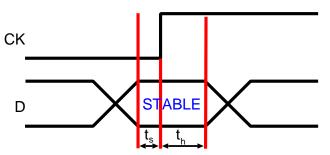
- Table de Vérité
- Front Montant
- Front Descendant

D	Н	Q	Q
X	0	Q	Q
0	\downarrow	0	1
1	\downarrow	1	0

La bascule D active sur front : chenillar



La bascule D active sur front : Considérations Temporelles



- *t_s* est le temps de prépositionement (*setup en anglais*)
- t_h est le temps de maintien (hold en anglais)

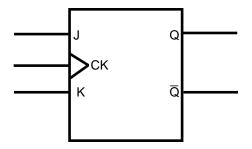
Vhdl: Bascule D active sur front

```
entity bascule is
  port ( d, clk : in std_logic;
         q : out std_logic );
end entity bascule;
architecture comport of bascule is
begin
  stockage : process(d,clk) is
  begin
   if clk='1' and clk'event then
   q \le d;
  end if;
  end process stockage;
end architecture comport;
```

La bascule JK

 \overline{Q}_{n+1} Κ Н Q_{n+1} ■ Front Montant \overline{Q}_{n+1} Н Q_{n+1} Κ 0 Q_n ■ Front Descendant

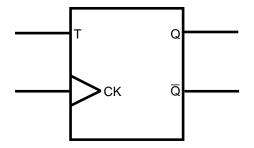
Symbole Bascule JK



La bascule T

Front Montant
$$\begin{array}{c|ccccc}
\hline
T & H & Q_{n+1} & \overline{Q}_{n+1} \\
\hline
0 & \uparrow & Q_n & \overline{Q}_n \\
1 & \uparrow & \overline{Q}_n & Q_n \\
\hline
\hline
T & H & Q_{n+1} & \overline{Q}_{n+1} \\
\hline
\hline
0 & \downarrow & Q_n & \overline{Q}_n
\end{array}$$
Front Descendant

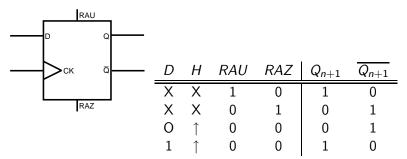
Symbole Bascule JK



Entrées Asynchrones

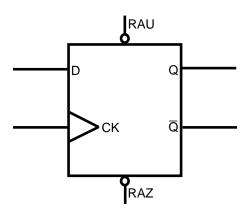
- Nécessité de forcer les sorties
- Ajout d'entrées asynchrones
- RAU : Remise à Un ou entrée *Set* en anglais
- RAZ : Remise à Zéro ou entrée *Reset* en anglais

Entrées Asynchrones



- Combinaison RAU=RAZ=1 interdite
- Entrées RAU et RAZ souvent actives à 0

Entrées Asynchrones



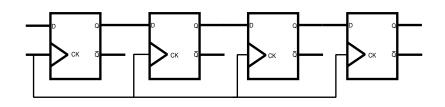
Et après ?

Les registres

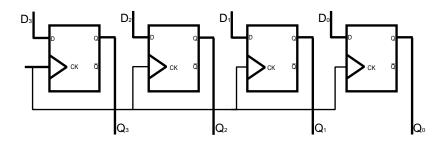
Les registres

- Taille des données 1 bits
- Associer des Bascules pour augmenter la taille
- Eléments importants dans les micro-processeurs : permet de réaliser un pipeline
- Réalise des barrières de synchronisation

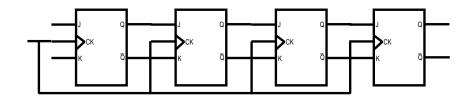
Registre bascules D Registre à Décalage



Registre bascules D Registre à chargement parallèle



Registre bascules JK



Vhdl: registre

```
entity reg8generic is
generic (N : natural := 8);
port ( d :in std_logic_vector(N-1 downto 0);
       clk : in std_logic;
       q: out std_logic_vector(N-1 downto 0) );
end entity reg8generic;
architecture comport of reg8generic is
begin
 stockage : process(clk,d) is
begin
  if (clk='1' and clk'event) then
    q \le d;
  end if;
end process stockage;
end architecture comport;
```

Cours d'électronique numérique Logique Séquentielle

Les monostables

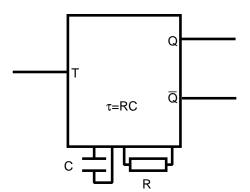
Monostable simple

■ Circuit ne possédant qu'un état stable

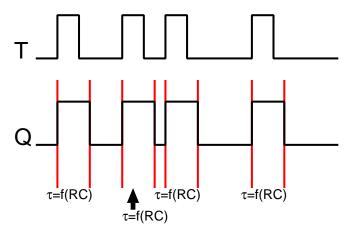
	Q	Q	Etat
■ Souvent :	0	1	Stable
	1	0	Quasi Stable

- Etat Quasi Stable est momentané
- Durée Quasi Stable fixée par circuit RC

Monostable simple

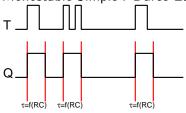


Monostable simple

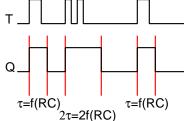


Monostable redéclencheable

■ Monostable Simple : Durée Etat Quasi Stable Fixe



■ Nécessité de pouvoir rester Quasi Stable

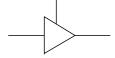


Les portes 3 états

- Boole = 2 états : 0 et 1
- Connexion de 2 composants sur le même fil ?
- Première Solution : Court Circuit PERDU
- Seconde Solution : multiplexeur encombrant
- Troisième Solution : Composant d'interface La porte 3 états GAGNE

Les portes 3 états

- Introduction d'un Etat Z
- Etat Haute Impédance
- Tout ce passe comme si le fil n'était pas connecté



Vhdl: registre

```
entity reg8generic is
generic (N : natural := 8);
port ( d :in std_logic_vector(N-1 downto 0);
       en, clk : in std_logic;
       q: out std_logic_vector(N-1 downto 0) );
end entity reg8generic;
architecture comport of reg8generic is
begin
 stockage : process(d,en,clk) is
 begin
 if (clk='1' and clk'event) then
     if en = '1' then
       q \le d:
     else
        q<= (others=>'Z');
     end if:
 end if;
 end process stockage;
end architecture comport;
```

Systèmes Séquentiels Complexes

Systèmes Séquentiels

Systèmes Séquentiels

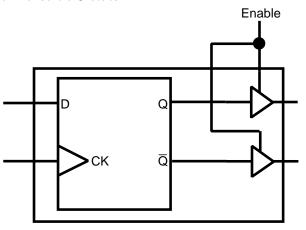
- Les registres (Déjà vus)
- Les mémoires
- Les compteurs
- Le contrôle (les pipelines)
- Les Machines à Etats (Cours Synthèse des Systèmes Numériques)
- What Else ?

Les mémoires

- Association de plusieurs Registres
- Utilisation de Bascules D souvent
- Mémoires Asychrones ⇒ Bascules Asynchrones
- Mémoires Synchrones ⇒ Bascules Synchrones
- Ajout d'une entrée de sélection

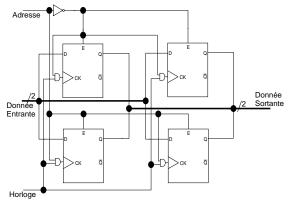
Les mémoires

■ Sélection ⇒ sortie 3 états



Les mémoires

■ Mémoire 2 mots de 2 bits

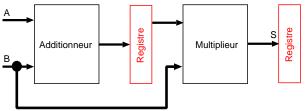


Les Compteurs

- Système séquentiel dont les sorties sont une suite pré-déterminée d'états
- Bascules D ou JK
- Plus ou Moins Complexes
 - Simple (Bête) compte de 0 à N-1 en boucle
 - log₂(N) bascules
 - Complexes
 - Initialisation
 - Arrêt Reprise
 - Compteur Décompteur
 - Fonctions nécessaires à l'application

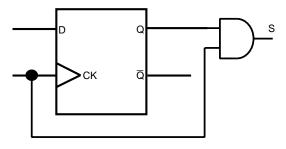
Le contrôle

- Contrôle du flux des données
- Un registre entre 2 opérateurs
- Réalisation d'un pipeline

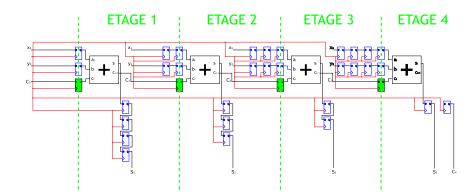


$$S_n = (A_{n-1} + B_{n-1}) * B_n$$

Les Aléas



Pipeline



Pipeline

Principe:

Découper l'opérateur en plusieurs étages isolés les uns des autres. C'est le signal d'horloge qui autorise les transfert des données d'un étage à l'autre. Cette technique permet d'accélérer la cadence de production des résultats.

Latence

La latence (durée d'exécution totale) de l'opérateur est supérieure d'au moins ϵ à celle d'un opérateur non pipelinée. Si la durée maximale d'un étage de l'opérateur pipeliné est de t_{max} et qu'il y a n étages, alors la latence de l'opérateur est $T=n*t_CLK$ avec $t_clk>t_max+t_h+t_s$ avec t_s et t_h les temps de prépositionnement et de maintien des bascules.

Références

- Conception des ASICS P. Naish et P. Bishop Masson
- Logic Reference Guide 4Q2001 Texas Instrument http://www.ti.com
- Des Liens Utiles pour tous les Electroniciens http://perso.wanadoo.fr/xcotton/electron/index.htm

Vocabulaire

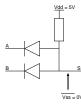
- Quelques grandeurs caractéristiques
- F Fréquence de Fonctionnement
- P Puissance Dissipée
- \blacksquare T_p Temps de Propagation
- Sortance : nombre maximal d'entrées qui peuvent être pilotées par une sortie.

Intégration ?

- Plusieurs niveaux d'intégration
- SSI: Small Scale Integration < 12 portes logiques
- MSI: Mean Scale Integration de 12 à 99 portes logiques
- LSI: Large Scale Integration de 100 à 9999 portes logiques
- VLSI: Very Large Scale Integration de 10000 à 99999 portes logiques
- ULSI: Ultra Large Scale Integration 100000 et plus de portes logiques

Technologie - 1

- Comment réaliser des fonctions logiques ?
- Nécessité de composants commandés électriquement
- Les Diodes (Famille DTL)



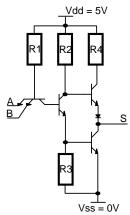
Les Transistors

Technologie - 2

- La logique Bi-polaire
- Famille originelle des transistors
- Bipolaire=Rapidité
- Bipolaire=Consommation

Bipolaire

■ La Famille TTL : Transistor - Transistor - Logic



T.T.L 1

- Historique : première famille : 1964 Texas Instrument Famille 54/74
- Famille 74 : Famille de référence
- Tous les fabricants utilisent cette référence
- Compatibilité des circuits entre eux
- Tension d'alimentation : 0-5V
- 1 logique : $V_{ih} > 2V$
- \blacksquare 0 logique : $V_{il} < 0.8V$

T.T.L 2

- Plusieurs Variantes de la famille 74
- 74L : Famille Faible consommation
- 74H : Famille rapide
- 74S : Famille rapide basée sur des Diodes Schottky
- 74LS : Famille Schottky Faible consommation
- 74AS et 74 ALS : Famille Avancée Schottky

T.T.L 3

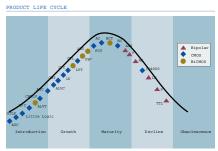
	74	74L	74S	74LS	74ALS
t_p (ns)	9	33	3	9,5	4
P (mW)	10	1	20	2	1,2
F_{max} (MHz)	35	3	125	45	70 (200 pour AS)
Sortance	10	20	20	20	20 (40 pour AS)

Bipolaire

- Il existe d'autres technologies bipolaire pour le numérique
- ECL : Emitter Coupled Logic Plus Rapide et Plus chère
- I2L : Utilisé dans des circuits logiques complexes

Maintenant et Demain

- Quelle technologie aujourd'hui et demain ?
- Hasardeux de prédire l'avenir
- Mais ...
- Prévisions Texas Instruments



CMOS

- Avantage du CMOS
- Faible Coût
- Facilité de fabrication
- Petite Dimension, jusqu'à un rapport 50 par rapport au bipolaire
- Pas d'élément résistif
- Faible consommation originale

Principe de Base du CMOS - 1

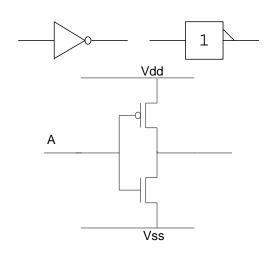
■ Il existe deux types de transistors dans le CMOS

- le PMOS le NMOS
- Mise en oeuvre de charges mobiles de polarité complémentaire ⇒ ComplementaryMOS
- lacksquare NMOS conduit si $V_g > V_s$ de plus de V_T
- lacksquare PMOS conduit si $V_g < V_s$ de plus de V_T

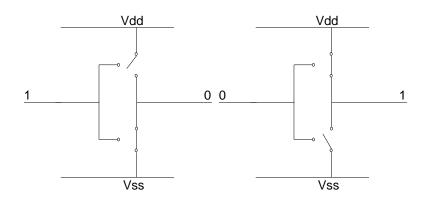
Principe de Base du CMOS - 2

- Numérique ⇒ Fonctionnement en mode interrupteur
- NMOS $V_g = 0 \Longrightarrow$ transistor bloqué, interrupteur ouvert
- lacktriangledown NMOS $V_g=V_{dd}\Longrightarrow$ transistor passant, interrupteur fermé
- PMOS $V_g = 0 \Longrightarrow$ transistor passant, interrupteur fermé
- lacktriangleq PMOS $V_g=V_{dd}\Longrightarrow$ transistor bloqué, interrupteur ouvert

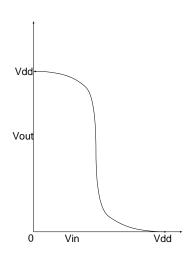
Utilisation du CMOS - l'Inverseur Réalisation



Utilisation du CMOS - l'Inverseur Modélisation



Caractéristique d'un inverseur CMOS Courbe de Transfert



Caractéristique d'un inverseur CMOS Courant Consommé

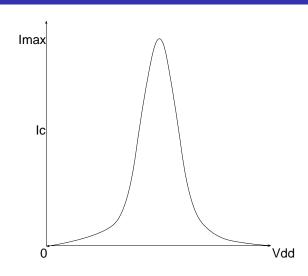
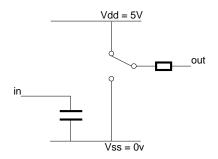
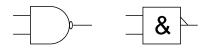


Schéma Equivalent d'un inverseur CMOS



- Modèle cohérent jusqu'à 20 MHz
- Permet de modéliser la sortance d'une porte

La complémentarité - La porte Non-ET

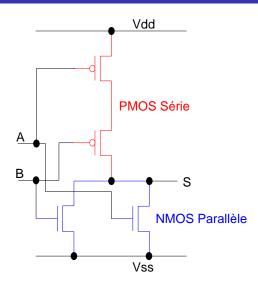


La complémentarité - La porte Non-ET



La complémentarité - La porte Non-OU

La complémentarité - La porte Non-OU

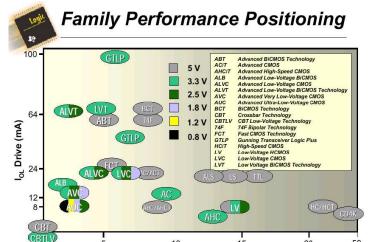


CMOS - limites ?

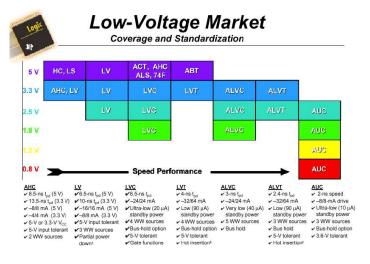
- $P \equiv V_{dd}^2 * C * F$ où C est la capacité totale du circuit
- Du à la commutation
- A technologie constante, le CMOS finit par consommer plus que le bipolaire si *F* ou *C* augmente
- Baisser la tension d'alimentation
- Modifier les procédés technologiques de fabrication de CI.

Famille CMOS

- Plusieurs familles CMOS
- 74HC : Compatibilité TTL



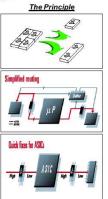
Famille CMOS



Famille CMOS

Little Logic

Provide Leadership Portfolio and Packaging Solutions



Références

Michel Hubin http://perso.wanadoo.fr/michel.hubin/physique/elec/chap_car

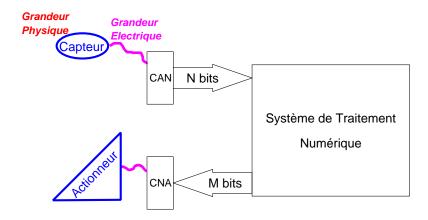
Communication

- Le monde numérique est un monde discrétisé
- Le monde réel est un monde continu
- Le monde n'est pas numérique
- Comment Interfacer les 2 mondes ?
- A travers des Capteurs

Communication

- Capteur = Fonction de conversion du Monde en grandeur électrique
- Capteur renvoie une Valeur Analogique
- Nécessité d'une fonction de conversion Analogique -Numérique
- Conversion Analogique Numérique : CAN
- Conversion Numérique Analogique : CNA

Communication



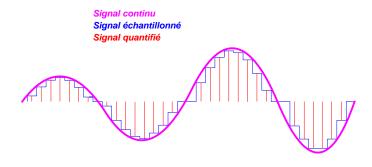
CAN: Définitions

La conversion analogique numérique consiste à transformer une grandeur électrique représentée par un signal en une grandeur numérique exprimée sur N bits après échantillonage et quantification du signal. Cette valeur est une valeur codée représentant un nombre proportionnel à la grandeur électrique.

CAN: Définitions

- Echantillonage : prise périodique de valeur du signal, attention à Shannon $F_e > 2 * F_{signal}$
- Quantification : association d'une mesure à la valeur échantillonnée, c'est une fonction de mémorisation.
- Pour le traitement Echantillonage/Quantification on parle aussi d'échantillonnage-blocage ou d'échantillonage-mémorisation.
- Codage : représentation de la valeur quantifiée dans un alphabet interprétable par un circuit numérique

CAN: Définitions



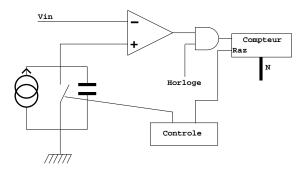
CAN: Caractéristiques

- Résolution : Amplitude de la plus petite variation. Correspond au LSB (Least Significant Bit)
- Temps de conversion : Temps de stabilisation de la donnée en sortie
- Erreur de Quantification : Incertitude du à la conversion
- Pleine Echelle : Etendue de la grandeur Analogique d'entrée

CAN: Types

- Il exite différents type de conversion
- La conversion à rampe
- La conversion à double rampe
- La conversion à approximation successive
- La conversion Flash
- La conversion Sigma-Delta

La conversion à rampe

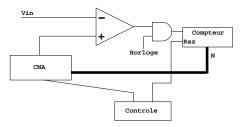


La conversion à rampe

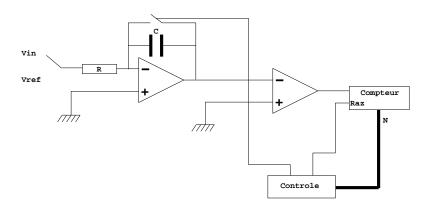
- Phase 1 : V_c , tension aux bornes de C mis à 0 ainsi que N
- Phase 2 : Intégration aux bornes de C, $V_c = \frac{1}{C} \sum Idt = \frac{I}{C}t$ tant que $V_{in} > V_c$ le compteur est incrémenté
- $V_{in} = V_c$ le comparateur passe de 1 à 0 et bloque le compteur sur la valeur N correspondant au nombre binaire recherché

La conversion à rampe numérique

Utilisation d'un CNA pour générer une rampe numérique.



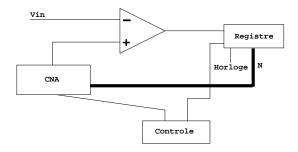
La conversion double rampe



La conversion double rampe

- Phase 1 : Connexion du montage sur V_{in} . Chargement de C pendant un temps fixe T_0
- Phase 2 : Connexion du montage sur V_{ref}, de polarité inverse à V_{in}. Déchargement de C jusqu'à 0. Durant ce temps on incrémente le compteur jusqu'à N. N est la valeur binaire recherchée.

La conversion à approximations successives



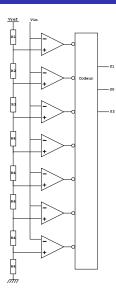
La conversion à approximations successives

- Détermination des valeurs de bits de *N* les unes après les autres en commençant par le bit de poids fort
- On fixe le bit de poids fort à 1 et les autres à 0. Conversion NA du registre et comparaison à V_{in}
- Si V_{in} est plus grand alors le bit reste à 1 sinon il passe à 0.
- On garde la valeur du bit de poids fort et on passe au bit suivant
- On rérête le même traitement que précédemment pour ce bit et ainsi de suite jusqu'au bit de poids faible.

La conversion à approximations successives

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$
- $11000000 = 7,5V > 6,92 \rightarrow B_6 = 0$
- $10100000 = 6,25V < 6,92 \rightarrow B_5 = 1$
- $10110000 = 6,675V < 6,92 \rightarrow B_4 = 1$
- $10111000 = 7,1875V > 6,92 \rightarrow B_3 = 0$
- $10110100 = 7,03125V > 6,92 \rightarrow B_2 = 0$
- $10110010 = 6,95312V > 6,92 \rightarrow B_1 = 0$
- $10110001 = 6,91406V < 6,92 \rightarrow B_0 = 1$
- Valeur Numérique :10110001

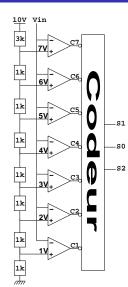
La conversion Flash



La conversion Flash

- Flash = Parallèle
- lacktriangle Principe : Comparer V_{in} à un ensemble de tensions prédéfinie
- Utiliser un codeur pour générer le nombre binaire

La conversion Flash : Exemple



La conversion Flash : Exemple

$V_i n$	C_1	C_2	C_3	C_4	C_5	C_6	C_7	S_2	S_1	S_0
< 1								0		
							1			
>2, <3								0		
>3, <4	0	0	0	1	1	1	1	0	1	1
>4, <5	0	0	0	0	1	1	1	1	0	0
>5, <6	0	0	0	0	0	1	1	1	0	1
>6, <7	0	0	0	0	0	0		1		
>7	0	0	0	0	0	0	0	1	1	1

La conversion Sigma-Delta

Convertisseur Sigma-Delta : peut être vu comme un convertisseur double rampe en commutation continue pour maintenir la charge intégrée nulle en moyenne.

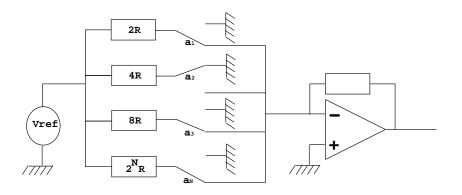
CAN: Comparaison

Туре	Vitesse	Erreur	Résolution
Simple	Faible	Elevée	Moyenne à élevée
Rampe	(ms)	Elevée	(7 à 14 bits)
Double	Faible	Faible	Elevée
Rampe	(ms)	Faible	(10 à 18 bits)
Appro-	Moyenne	Moyenne	Moyenne à élevée
-ximation	($pprox 10 \mu$ s)	Moyenne	(8 à 6 bits)
Flash	Elevée	Moyenne	Faible à Moyenne
	$(ns,\!\mus)$	Moyenne	(4 à 10 bits)

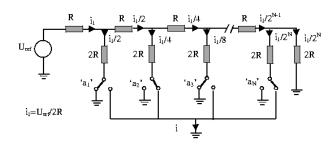
CNA: Types

- Il existe différents type de Conversion Numérique Analogique
- Résistances Poids Proportionnels
- Réseau R2R

CNA: Résistances Poids Proportionnels



CNA: Résistances R2R



CNA: Comparaison

Туре	Vitesse	Erreur	Résolution
Poids Pondérés	Elevée (μ s)	Elevée	Faible
R2R	Elevée (μ s)	Faible	Elevée